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This review article provides an overview of papers that have studied body movement mirroring and synchrony
within the field of human-robot interaction. The papers included in this review cover system studies, which
focus on evaluating the technical aspects of mirroring and synchrony robotic systems, and user studies, which
focus on measuring particular interaction outcomes or attitudes towards robots expressing mirroring and
synchrony behaviors. We review the papers in terms of the employed robotic platforms and the focus on
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1 Introduction
With the growing availability of social robots, interaction dynamics is becoming a topic of increas-
ing interest, making the social interaction between humans and robots a research topic of high
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relevance. One of the many conveyances that nonverbal signals, such as body movements, gestures,
facial expressions, gaze, posture, special behavior etc. [5] have is their contribution to interaction
adaptation and coordination. Since the adaptation that occurs during human-human interaction
is often bidirectional [15], it is important to consider which human behaviors can be adapted or
transformed into robot behaviors if robots are to interact with humans in a social manner.

In human social interactions, people tend to mirror and synchronize to the body movement of
their interaction partner as a way to coordinate and adapt to each other [12]. Furthermore, research
in social and developmental psychology shows that when people interact, their movements tend
to become coordinated [78, 103]. When people engage in a joint action, they coordinate their
individual actions in order to achieve a common goal [105]. This coordination is also known as
interpersonal coordination, which starts to emerge in early childhood and is considered to be the
driving force behind successful interaction [78].

In the field of human-robot interaction (HRI), Edwards et al. [32] investigated people’s
expectations for interacting with a machine-like social robot. They later replicated and extended
their work in [31], where a social robot was replaced with a humanoid robot which has a stronger
human-like morphology. More specifically, the authors of [31] explored whether participants would
report higher uncertainty, lower social attraction and social presence than when expecting to
interact with a human and how these initial expectations change after an interaction with a robot.
Their results suggest that the morphology of a robot and the initial interaction have an impact on
people’s expectations of how the social robot will behave/communicate. Actual interaction with the
robot exceeded initial expectations. With their results, the authors showed that people generally
strive to interact with robots according to the same interaction patterns they use when interacting
with other people. In addition, they discuss what they call an anthropocentric expectancy bias,
which is the tendency of people to assume their fellow interactants will communicate as humans
or human-like and experience a violation of pre-conceived rules when the interactants are less
human-like. Therefore, when working on improving a robot’s social capabilities, it is important to
take into consideration the expectations gap, i.e., the disparity between people’s expectations and
the actual abilities of the robot [11, 64].

To make robots capable of taking part in social interaction, research regarding the interaction
dynamics, the behaviors influencing coordination and adaptation of the interactants’ movements, is
required (as proposed in [115]), along with the potential of these signals for making an interaction
effective and intuitive. This will allow for a better understanding of how a robot and a human can
engage in a joint action successfully. Thus, further research is necessary to comprehend in more
detail how body movements can aid the motion adaptation and coordination in an interaction
between a human and a social robot. One possible approach to the challenge of interaction dynamics
is making use of the interaction patterns mirroring and synchrony, which, when combined, make
up interpersonal coordination.

1.1 Aims and Scope
In order to support the integration and usage of mirroring and synchrony in the design and
implementation of socially competent/intelligent robots, we perform a review of papers that have
been published so far in the field of HRI. Past review papers have mainly focused on one [8, 61,
126] or both [121, 127] of these phenomena in the fields of psychology or across several other
disciplines [28]. A notable review article in robotics with a specific focus on the application in
care was published in [73], where mirroring was referred to as “reciprocity”. Our article aims to
provide a comprehensive review of papers within the field of HRI that have studied synchrony and
mirroring, separately or together, from different perspectives and for different applications.
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Fig. 1. Tree representation of mirroring and synchrony HRI studies classification.

We employed several search engines and digital libraries such as Google Scholar, ACM Digital
Library, IEEE Xplore, and Springer. Important search keywords were “human robot interaction,”
“mirror,” “imitation,” “mimicry,” “synchrony,” “entrainment,” and “motor coordination.” We selected
the articles to meet at least one of the following inclusion criteria: (i) papers describing an imitation
of human motion that can potentially be used for mirroring and/or synchrony robotic behavior; and
(ii) papers describing experiments where humans are interacting with robots expressing mirroring
and/or synchrony behavior.

Brooks [14] has argued for incremental development of robotic behavior, where each behavioral
layer adds more complexity to the robot’s capabilities. Thus, mirroring and synchrony behavior
can be seen as a core layer onto which other complex behaviors can be developed (e.g., learning
algorithms). Jordanous [55] reiterated and again advocated for Brooks’ [14] approach.

Research regarding mirroring and synchrony in HRI includes two important categories: papers
focused on system studies, describing technical systems that implement mirroring and/or synchrony
behavior, and papers focused on user studies, evaluating effects of different experimental conditions
with a stronger focus on the human participant. This categorization of research studies is based on
[9, p. 132–134], where Bartneck et al. identify the following types of studies in the field of HRI: user
studies, system studies, observational studies, ethnographic studies, crowdsourced studies, and
single-subject studies. Our review covers user studies and system studies. Additionally, to get an
overview of the interaction context diversity in which body movement mirroring and synchrony
behaviors of robots have been evaluated, the type of scenarios employed in the user studies is
specifically considered.The identified types of scenarios lead to a further split into user studies using
movement-based scenarios and conversation-based scenarios. Figure 1 shows a visual representation
of the overall categorization.

In Section 2, we present different definitions and terminology used in the literature to describe
the two interactional patternsmirroring and synchrony in general and in HRI studies. An important
aspect when studying these patterns is the morphology of the human body and the embodiment
of the robotic platform involved in the interaction. Thus, the body parts that have been the focus
of mirroring and synchrony behavior research and the robotic platforms used are reviewed in
Section 3. In Section 4, we demonstrate the implementation of the interactional setting in terms of
the methods used to extract necessary information from human motion and methods of reacting
to human motion. However, the details of the kinematic models used in human-robot imitation
systems for translating human body movement to robot body movement are beyond the scope
of this review. In Section 5, the methods used to evaluate the technical systems and to measure
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particular interaction outcomes are discussed. Section 6 features the target applications for the
implemented systems and the scenarios used for testing different experimental conditions. Finally,
Section 7 provides a discussion and outlines open questions as a guide for future research in the
field of mirroring and synchrony in HRI. A comprehensive overview of the included studies can be
found in Table 5 towards the end of the article.

2 Definitions and Terminology
The terms mirroring and synchrony are used in the literature to describe behaviors of animate
and inanimate objects in different contexts. HRI studies usually rely on mirroring and synchrony
definitions borrowed from the fields of behavioral sciences such as social and developmental
psychology or neuroscience. As a basic definition, the Collins dictionary describes mirroring as
“If something mirrors something else, it has similar features to it, and therefore seems like a copy
or representation of it” [22]. The state of being synchronous is defined as “occurring or recurring
exactly together and at the same rate” [23]. In movement studies, specifically focusing on dance
and movement therapy, mirroring is considered to be an imitation of movement qualities, and it is
often used as an exercise to increase empathy among the human interactants [77].

In this review article, we use the definitions proposed by Burgoon et al. [15], in which mirroring,
mimicry, and synchrony are considered part of interaction adaptation patterns, as a main framework.
These definitions then serve to compare the frameworks used in HRI studies and to provide a
general idea of overlaps and divisions in the terminologies used in the selected studies. Furthermore,
these definitions provide a good indication about the inclusion criteria of the research papers in
this review.

Mirroring is defined as “… the imitation of another’s body movements.” [15, p. 26].
Mimicry is defined as “… the tendency to imitate others’ nonverbal expressions, particularly

expressions such as laughter, pleasure, embarrassment, pain, discomfort, and physical exertion….
the process of an instinctual overt reaction that is appropriate to another person’s situation rather
than to one’s own.” [15, p. 25–26].
Synchrony is defined as “… individuals coordinate their communication behaviors temporally

with those of another conversant to achieve a kind of “goodness of fit” between them.” [15, p. 19].
Generally, in literature, the terms mirroring and mimicry have often been used interchangeably.

However, Burgoon et al. distinguish the two phenomena by explaining that the emergence of
mimicry “requires neither that others be present to witness the display nor that the observer
have a prior relationship with the observed”. On the other hand, “mirroring is the imitation
of another’s body movements… posited to serve a bonding or affiliative function and to signal
rapport among interactants” [15, p. 26]. Another important concept comes from the work of
Bernieri and Rosenthal [12] on nonverbal human behavior. Mimicry and mirroring, or what the
authors call behavior matching and interactional synchrony are defined under the same umbrella
term interpersonal coordination, originating from their contribution to interaction coordination.
This behavior is described as “… mutuality, accommodation, and synchrony found in everyday
interactional coordination” in [102] or, more concisely, as interactional synchrony in the authors’
later work [103]. The chameleon effect introduced by Chartrand and Bargh [18] is another notion
relevant to research on social interaction, and the authors define it as the “nonconscious mimicry
of the postures, mannerisms, facial expressions and other behaviors of one’s interaction partners,”
i.e., an unintentional matching of body motion.

Several HRI studies view mirroring and synchrony in the frame of the described interaction
system’s purpose. For example, mimicking to improve the social intelligence of autistic children
[40], synchrony as an essential part of human communication [48], mirroring as a natural behavior
(between humans) [39], or the level of synchrony as a reinforcement signal for learning [92]. This
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Fig. 2. Robotic platforms used in mirroring and synchrony HRI studies split into two categories, humanoids
and non-humanoids, where the y-axis represents the (approximate) year of production. The images are taken
either from the related studies cited in the text or from the official pages of the robot manufacturers.

article covers studies within the field of HRI with a focus only on body movement mirroring and
synchrony rather than other nonverbal behaviors such as facial expressions.

3 Robotic Platforms and Body Parts
Human bodies and robot bodies are different in many ways. For instance, the material they are
made of, the number of joints, the degrees of freedom (DOF) in the joints, the speed at which
they can move, etc. One of the challenges that emerges from these differences is the relational
homomorphism or correspondence problem [86], which is defined as how successful the matching
between the human motion and the imitated robot motion is. To facilitate the mapping between
dissimilar bodies, one common approach in imitation studies is the use of humanoid robots due
to their morphology being similar to that of humans (head, arms, etc.). The following subsections
provide an overview of humanoid and non-humanoid robots used in mirroring and synchrony
studies. Figure 2 shows the robotic platforms used inmirroring and synchronyHRI studies according
to the year of production and split into two categories, humanoids and non-humanoids. Table 1
shows the relevant robotic body parts and which robotic platforms were used for the specific body
parts.

3.1 Humanoid Robots
The most commonly used platform is the humanoid robot Nao created by Aldebaran,1 which has
a head, torso, two arms, and two legs with a total of 25 DOFs. A possible reason for its frequent
use could be the easy access, affordable price, and robot size (58 cm in height), which helps in the
evaluations and testing of the HRI system. When testing robot motion with larger humanoids that
also have two legs there is the need to consider the balance of the upper body with respect to the
lower body. Thus, the space in which the humanoid can move is often constrained by attaching
security ropes to the robot, whose purpose is to avoid damaging in case it falls. In mirroring and
synchrony studies, Nao has been used for imitation of whole-body movements, which include
head, arm and leg movements [66, 69, 91, 114, 133, 136], arm and head movements [62], arm and

1https://www.aldebaran.com/en/nao
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Table 1. Clustering of Robotic Platforms Used in Mirroring and Synchrony in HRI Studies According to
Which Body Parts Have Been the Focus

Body part(s) Humanoids Non-humanoids

Whole-body
Nao [66, 69, 91, 114, 133, 136], HRP-4 [25]
DARwIn–OP [20, 87], iCub [27, 98],
IRT [90]

Keepon [79, 112], Turtlebot 2.0 [54]
Cube Performer [41, 42]

Arms and head ARMAR-IIIb [29], Hoap-3 [40], Nao [62],
Pepper [52, 53, 116, 131], ETL [19] –

Arms and legs Nao [33, 60, 134] –

Arms

Nao [1, 4, 39, 45, 48, 83, 84, 117, 125, 132]
Nao [3, 130], Alter3 [76], ASIMO [26],
HRP-2 [118], KASPAR2 [107, 108],
Nico [24], Pepper [50] , Tron-X [63],
Baxter [106], (unnamed) [72, 74]

ADRIANA [92], Js-2 [75],
Kinova MICO [57],
Universal Robots UR5 [94]

Head Repliee Q2 [109] Virgil [96]

Torso Pepper [49] Care-O-Bot3 [65], BeamPro [21]

leg movements [33, 60, 134], and only arm movements [1, 3, 4, 39, 45, 83, 84, 117, 125, 130, 132]. In
studies focusing only on synchrony, Nao has been used to detect an attempt to interact with an
interaction partner, by modeling the dynamics of the robot and of an interactant and the use of
synchrony detection between the two [47, 48].

In studies that include other humanoids, the upper body, which includes the arms, is the most
common center of interest for mirroring and synchrony behavior. The humanoid Nico [24] synchro-
nized to arm movements, Alter3 [76], ASIMO [26], HRP-2 [118], Baxter [106] and Tron-X [63] were
imitating arm movements. A human-sized mechanical robot developed in [113] and featuring two
anthropomorphic arms has been used to investigate arm movement synchronization in an inter-
action between the robot and a human [72, 74]. The KASPAR2 robot has been used to study motor
coordination of armmovements [107, 108].The android Repliee Q2 [109] mimicked headmovements,
while the Pepper robot was used to mirror torso movement [49]. For head and arm movements,
the robots Pepper [52, 53, 116, 131], Hoap-3 [40], ARMAR-IIIb [29] and ETL Humanoid [19] have
been used. Lastly, the iCub [27, 98] robot DARwIn–OP [20, 87], IRT [90] as well as the HRP-4 [25]
robot imitated a human’s whole-body movement, which included the head, arms and legs.

3.2 Non-Humanoid Robots
Besides humanoid robots, non-humanoid robots have also mirrored and synchronized to human
movement. Keepon [112] has been used to mimic children’s expressive motion when dancing
with its whole body (nodding, panning, rocking, and bobbing) by using the Effort item from
the Laban Movement Analysis (LMA). LMA is a method used in choreography and dance to
analyze and interpret whole-body movement according to a few items describing the Body, Space,
Shape and Effort [44]. Keepon has also been used to rhythmically synchronize to children dancing
using its whole body [79]. In [54], dancing participants were filmed with Kinect cameras, and
once certain dance events occurred, a Turtlebot 2.0 robot rolled or turned according to the event.
Robotic arms that imitated human arm movement include the Universal Robots UR5 [94], used
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for teleoperation, the Kinova MICO [57], used for playing a mirror game, and the Js-2 [75], used
for rhythm entrainment for rope turning and the ADRIANA robot for a learning system that uses
synchrony of arm movements as a reinforcement parameter [92]. The zoomorphic robot Virgil
mimicked a human’s head gestures [96]. The telepresence robot BeamPro mirrored an interactant’s
body orientation [21], while the Care-O-Bot3 synchronized its torso orientation to follow the
movements of a human [65]. Outside the realm of purely technical works and more situated in the
field of art and design, “Cube performer” was used in [41, 42] to obtain the shape of a robot and the
corresponding movements of a dancer in an iterative feedback loop.

4 Interaction Implementation
In human social interactions, the behaviors mirroring and synchrony are usually reactions to
a particular action in space and time. In related technical systems designed for HRI, two key
components are (1) a technique for sensing human motion and (2) a method of reacting to human
motion, which is reviewed in the following two subsections, respectively.

4.1 Sensing Human Motion
To study coordination in HRI, a number of different motion tracking methods have been used,
which vary in the complexity of the hardware and software components involved. The performance
of a variety of motion tracking techniques was thoroughly discussed in [135], where the authors
distinguish between the two major groups of visual-based and non-visual-based tracking in the
context of rehabilitation systems. A compact review of magnetic, mechanical and optical methods
is given in [93]. A survey of computer-vision-based human motion capture can be found in [80],
and a detailed review of human motion capture for robotics was presented in [36].

In the domain of non-optical sensors, one approach is to use inertia sensors, i.e., inertial
measurement units (IMU), which are usually attached to specific body parts or integrated into
special suits. In particular, the Xsens suit2 was used in [27, 60, 114]. A Wii Remote, which also
includes an accelerometer, was used to capture armmovements in [107]. A general survey on human
motion tracking using inertia sensors can be found in [51], and upper-body motion specifically was
addressed in [37]. The advantages of IMUs are the theoretically unlimited workspace compared
to optical counterparts and the fact they do not suffer from occlusions. A downside is that the
accuracy of the sensed joint positions tends to decrease over time due to mechanical fatigue. In
the following, we focus our discussion on optical sensors as they are most dominantly used in
mirroring and synchrony studies.

Optical sensors are commonly divided into optical-marker methods, which usually consist of
several external cameras and wearable markers (active or passive) attached to specific body parts
that need to be tracked (e.g., the Vicon systems3), and optical-markerless methods, which generally
are based on the use of a camera (or multiple cameras) in combination with computer vision
algorithms. For human motion capture, computer vision algorithms typically target human pose
estimation and tracking (e.g., the depth-sensing camera Microsoft Kinect4 with its own skeletal
tracking algorithm). Due to the nature of HRI in a social context, it is important to consider
optical-markerless human pose estimation due to the increased comfort of the interactant.

A number of works have relied on various types of optical markers for the perception component
of the technical system [40, 74, 75, 81, 85, 90, 109]. Over the years, Vicon systems have become
widely used [29, 59].

2https://www.xsens.com/
3https://www.vicon.com/
4https://developer.microsoft.com/en-us/windows/kinect/
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For capturing human motion in an optical-markerless fashion, the most widespread approach
is the use of the depth-sensing camera Kinect with its human pose estimation algorithm, more
specifically, Kinect v2. It is important to note which Kinect version is used due to the difference in
accuracy of the joint detection in the skeletal tracking algorithm.The Kinect v2 was found to overall
give more accurate joint positions than the Kinect v1 [123]. Kinect v1 has been used in [87, 91, 130,
136], Kinect v2 in [20, 45, 49, 54, 67, 112, 125], and no Kinect version has been reported in [33, 66,
83, 134]. In recent years, the usage of a depth-sensing camera in combination with OpenPose [17],
a computer vision algorithm for 2D human pose estimation, has become popular (see an example
in [131]).

Summarizing the pros and cons of the three motion capture categories addressed above, it can
be stated that methods relying on optical-markers excel in terms of accuracy and reliability since
measurements of inertia sensors can be degraded by drift, and optical-markerless methods have
to cope with possible errors in joint locations estimated by computer vision techniques. A clear
advantage of optical-markerless approaches is that no special suits or devices attached to the body
are necessary, which allows for natural HRI, comfortable set-up and low costs. Optical-marker-
based approaches usually require several cameras looking at the human interactant from different
viewpoints and are thus demanding in terms of space constraints. A desirable property of inertia
sensors is their robustness to occlusions. The widespread availability and high potential of optical-
markerless methods are reflected by the distribution of entries in the “Sensors” segment of Table 5.
For all approaches—optical-marker, optical-markerless, and inertia sensors—the estimated/sensed
joints are then used to map the human motion into robot motion for synchronous imitation.

4.2 Reacting to Human Motion
The reaction of the robot to the human motion is usually based on an implemented robotic system
or remotely controlled by a person. The latter is also known as the Wizard-of-Oz technique, whose
introduction is attributed to [58]. A survey on Wizard-of-Oz works in HRI can be found in [95].

System studies, as opposed to user studies, describe and discuss developed technical systems
that map human motion into robot motion. As discussed in Section 4.1, the technology used to
sense human motion provides human joint positions. Thus, to generate synchronous imitation, a
common approach is to map between human joint positions and robot joint angles/positions.

In mirroring and synchrony system studies focused on estimating robot joint angles from human
joint positions, the most common approach is to solve the robot’s inverse kinematics problem.
Generally, in robotics and computer animation, inverse kinematics (IK) is used to calculate all joint
angles within a chain that are necessary to move a robot’s or an animated character’s joints to a
given joint position; for example, to move the robot’s end-effector (the last joint within a chain
of joints allowing the robot to interact with the environment) to a given reachable position in 3D
space. The methods used to solve the IK problem include analytical [40, 52, 87, 116, 125, 132, 133],
numerical [1, 26, 27, 29, 45, 60, 84, 85, 89, 91, 94, 97, 129, 134], and data-driven/machine learning
[33, 59, 66, 114, 131] approaches. Numerical solutions are usually based on iterative algorithms
that try to solve the IK problem as an optimization problem, while analytical solutions can be
derived in two ways using geometry to find the angle or using algebra to have the angle expressed
in equations from forward kinematics. Recent machine learning methods usually employ neural
networks to learn the mapping between human joint positions and robot joint angles (or positions)
by training on paired human and robot body poses. An advantage of such learning approaches is
the potentially easier replicability on different robotic platforms, whereas analytical and numerical
approaches depend on the hardware specifications (e.g., the length of the links of a particular body
chain) of the target platform. A disadvantage of machine/deep learning techniques is that they
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may require considerable time and training data to train the network prior to interaction (thus
sometimes denoted as data-driven approaches).

Aristidou et al. [6] mention real-time capable solutions for solving IK problems and reproducing
human poses abstractly (without a robot) that were published as early as 2004 [43] and 2008 [120].
In a later work, Aristidou et al. [7] discuss the various families of IK solvers, including those that
are real-time capable, both analytical and numerical. In the field of HRI, an early real-time capable
method was presented by Riley et al. [97], although the authors do not report numbers for the
achieved system delay. More recently, real-time solutions have been presented for a variety of
commonly used robotic platforms, such as Nao [1, 2, 60, 122, 134], Baxter [106], HRP-4 [25] and
Pepper [115]. Analytic solutions can be obtained in less than 50 µs [116, 133], numerical optimization
techniques find approximations in times below 5 ms [1, 60, 106], and a recent machine learning-
based method reports results within 50 ms [25], although these numbers can vary significantly,
depending on the complexity of the robotics platform or kinematic chain.

As opposed to conventional approaches, Zuher and Romero [136] report an attempt to generate
the joint angles directly from the sensor by using the estimated rotation matrix, which is available
from the OpenNI5 library for the Kinect camera. However, most of the joint angle values returned
by the OpenNI method did not yield sufficient accuracy for their application.

Some studies focusing only on synchrony employ methods for generating synchronous move-
ments based on dynamic systems theories [4, 24, 48, 56, 75, 81]. These methods are based on coupled
dynamics and include developing a mechanism for synchronization and motion generation that
sees the human and the robot as coupled oscillators. Andry et al. [3], on the other hand, have used
a neural network model based on modeling the dynamics of the robot and learning to predict the
rhythm of the interactants’ motions.

In general, the Wizard-of-Oz method is employed in user studies rather than system studies, and
its purpose is to respond to the participant’s behavior by controlling the robot with predefined
motions without the necessity of human motion sensing. Mirroring and synchrony user studies
utilized the Wizard-of-Oz method to control the robot’s arm movement [50], the orientation of the
robot with respect to the participant [21], the head and upper body movements, such as nodding
and pointing [111], as well as speech, head movements and gestures [62].

Some user studies have substituted live experiments of robot interaction scenarios with video-
based experiments, where participants watched videos of an interaction between a human and
a robot [65, 69]. In [65], the videos included positive and negative robot-to-human movement
synchrony, where observers found the robot to be more likeable when exhibiting synchronous
motions. In [69], the videos showed “dominant” and “submissive” robot behavior where observers
judged it to be less trustworthy in the former case. The assignment of the aforementioned works to
their respective mapping categories is also shown in the “Mapping” segment of Table 5.

5 Evaluations and Outcome Measurements
When designing and developing a technical system that allows a robot to mirror and synchronize
to human movement, system evaluation is an important step in the overall process. This step
contributes to making sure that the implemented system works as intended before using it in a user
study and also provides information that can be used for comparison with related existing systems.
Similarly, when studying how people respond to a mirroring and synchrony behavior expressed
by a robot in a user study, the method of measuring an interactional outcome or attitude towards
the robot is an important step. In this section, methods used to evaluate system performance and
measure outcomes of mirroring and synchrony in HRI are reviewed from both perspectives. Thus,

5https://structure.io/openni
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for system studies, the focus is on the evaluation of technical characteristics such as a technical
system’s accuracy and efficiency, while for user studies, the central questions are what interactional
outcome or attitude towards the robot is being measured and how it is measured. The works
discussed in this section are also listed in the “Evaluation” segment of Table 5.

5.1 System Studies
Mirroring in system studies is described as the ability to imitate human body motion, while
synchrony is described as the ability to synchronize to human body motion, in some cases in
combination with other modalities (e.g., audio [24]). We can identify two important aspects of
motion that are typically included in the evaluation process: (1) form-related metrics to assess the
similarity between the human pose and the imitated pose for mirroring, and (2) time-related metrics
to assess the temporal characteristics of the imitated movement for synchrony.

These two aspects can be evaluated using quantitative methods, qualitative methods or a mixture
of both approaches. Studies also occasionally report subjective measurements, as described by
Bartneck et al. [9, Chapter 9]. When using subjective methods in system studies, the technical
aspects of the regarded system are described, and it is then evaluated with a small user study (for
example, assessing the quality of the imitation [136]). Since subjective measures are mentioned only
in a few system studies, the following subsections will focus and review the evaluation approaches
used in the context of quantitative and qualitative evaluation methods. Table 2 shows an overview
of the methods used to evaluate the form and time features of different systems reported in studies
covered by this review.

5.1.1 Quantitative Evaluation Methods. Quantitative evaluation methods and metrics for form-
related features include the calculation of the mean squared error between the target and actual
end-effector trajectories [1, 33, 45, 116, 118, 132, 134] and pose similarity metrics which can be
measured using cosine similarity for angular configurations [1, 45, 132]. In addition, Zhang et al.
[134] report the mean deviation between targeted versus actual joint positions for specific motions
and Zabala et al. [131] report jerkiness and length of the generated trajectory paths, with jerkiness
as a smoothness measure based on the acceleration derivative [16]. Zhang et al. [133] compute a
similarity index, a correlation coefficient between two vectors, as well as joint angle errors, which
are also addressed in [97]. For time-related features, common metrics are the synchronization index
[54, 81], system delay [132] and related event-based metrics [54, 85]. Frequency synchronization
[47, 75], energy transfers [75], and reinforcement learning signals [92] have been utilized in the
past, while in more recent works, entrainment modes [83] or explicit memory transfers of motor
commands [76] are presented. A number of works also report computational effort/cost [33, 45, 60,
133] or similar metrics describing the required computational resources of the investigated systems
(e.g., execution cycle times [19], calculating time [40, 134]). For robotic systems focusing only on
synchrony, the synchronization index or mean phase coherence is commonly reported [54, 81, 82].

A particularly interesting example of the quantitative evaluation of form-related features, specifi-
cally the pose similarity between a human pose and the imitated robot pose, is the method proposed
by Lei et al. [66]. The authors reduce the human and robot motion space to a combination of shared
space and personal space, which allows them to regard the task as a dimensionality reduction
problem which is related to the unsupervised method of Wang et al. [124].

Evaluations of mirroring and synchrony behavior often incorporate visualization techniques for
form-related features, such as trajectory plotting of the - , . , and / coordinates of the end-effector
position or other joints angles [1, 27, 33, 52, 66, 84, 87, 91, 100, 119, 130, 132, 133], as well as the
position error [29, 60] over time.
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Table 2. Overview of Form-Related and Time-Related Features and Corresponding Metrics Used in
Quantitative andQualitative Evaluation Methods in Mirroring and Synchrony System Studies

Quantitative Qualitative

Fo
rm

-r
el
at
ed

Mean squared error or Euclidean norm of
targeted versus actual end-effector trajectories
[1, 33, 45, 116, 118, 132, 134]
Key joint angle errors [97, 133]
Visualizing position deviation over time [29, 60]
Plotting trajectories of end-effector or
joint positions or angles over time
[1, 27, 33, 52, 66, 84, 87, 91, 100, 119, 130, 132, 133]
Cosine similarity [1, 45, 132]
Pose distance metrics [66, 124]
Multi-facetted similarity index [133]
Jerkiness and length of generated trajectory [131]

Images of imitation of a human
side by side with a virtual robot
[1, 20, 59, 84, 87, 118, 129, 131]
Images of imitation of a human
side by side with a physical robot
[19, 29, 60, 85, 122, 125, 133, 134]
[33, 40, 56, 63, 90, 97, 116, 119, 136]
Images of imitation of a human side
by side with a physical and a virtual
robot [20, 27, 45, 66, 91, 129, 130, 132]
[26, 29, 76, 89]
Videos showing imitation results
with a physical [1, 76, 91, 94, 114]
or a virtual robot [131]

Ti
m
e-
re
la
te
d

Modes in entrainment [83]
Reinforcement signals [92]
Computational effort [19, 33, 40, 45, 60, 133, 134]
Memory transfers and motor commands [76]
Synchronization index [81] or event frequency [54]
or event correlation [85] or oscillation periods [83]
Angle trajectories [100] or frequency
synchronization [47, 75] over time
Energy transfers [75]

In the context of synchronization, visual evaluation methods for time-related features include
angle trajectories plotting of a human and robot synchronization in a simulated interaction [100]
and visual representation of a human and robot motion frequency synchronization over time [47,
75]. Furthermore, when synchrony is used as a feature to support learning, the evaluation includes
plotting of the difference between real and predicted human actions (phase shift) [3, 92].

5.1.2 Qualitative Evaluation Methods. Qualitative evaluation methods are typically images of a
human pose and the imitated pose of either a virtual (simulated) robot [1, 20, 59, 84, 87, 118, 129,
131], a physical robot [19, 33, 40, 56, 60, 85, 90, 97, 116, 119, 122, 125, 133, 134, 136], or both [26, 27,
45, 66, 76, 89, 91, 129, 130, 132]. Some papers also include a link to a video as a way to show the
results of the reported interaction system where usually a human performs a few motion sequences
which are imitated by the robot [1, 76, 91, 94, 114, 131].

5.2 User Studies
In user studies related to mirroring and synchrony in HRI, the outcome measurements depend on
the assigned dependent and independent variables. The dependent variable depends on the behavior
of the participant, and it is a variable that is being measured as an outcome within a study. Contrary,
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Table 3. Overview of Outcome Measurements in Mirroring and Synchrony User Studies and the Evaluation
Methods Used in Terms of Quantitative andQualitative Measures

Evaluated outcome Quantitative evaluation Qualitative evaluation

Impression
of the robot [39, 50, 65, 109, 111]
of the interaction [21, 96, 112]
of both the robot and the
interaction [49, 57, 62, 69, 107]

Questionnaires [21, 39, 49,
50, 57, 62, 65, 68, 96, 107, 109,
111]
Engagement, energy level
[112]

Behavior observation [39, 79]
Interviews [96]
Open-end questions in
questionnaires [21, 49]

Occurrence
of mirroring and synchrony
or (un-)intentional coordina-
tion between a human and a
robot

Questionnaires [54]
Interaction time [79, 92, 112]
or delay [3]
Velocity, lag variability and
dwell times [73, 81]
Amount of body movement
[49, 112]

Behavior observation [79, 81,
92, 112]

the independent variable is independent of the participant’s behavior and, therefore, is the one that
varied among conditions. Mirroring and synchrony have been studied both as dependent [50, 72]
and independent [21, 39, 49] variables.

In the case of a dependent variable, the research focus usually is on whether or not mirroring
and synchrony occur in an interaction between a human and a robot. For example, when a human
and a robot are performing a specific movement task, studies [72] and [50] explore whether their
movements get synchronized.Thus, the outcome measurements are usually methods of determining
the occurrence of mirroring and synchrony between a robot and a participant.

In the case of an independent variable, the focus of research is usually on how people respond
to a robot expressing mirroring and synchrony behavior within an interaction and thus the mea-
surement is an interaction outcome or an attitude towards the robot. These outcomes are usually
borrowed from research on human interactions in the field of social psychology, where studies
often include outcomes that can be evaluated with interpersonal or intrapersonal measures. Inter-
personal measures include the evaluation of the overall interaction, the judgment of the interaction
partner, and prosocial behavior, whereas intrapersonal measures refer to personal experiences or
emotional states during the interaction, such as anxiety, mood, etc. [121]. In this context, movement
coordination has been found to have an effect on specific interaction outcomes such as rapport,
smooth interaction, degree of liking, closeness, and similarity between interactants [121]. Similarly,
in HRI studies, some of the outcomes include likeability towards the robot [39, 109], perception of
the overall interaction [62, 96], and perception of the robot [49, 62, 69, 111].

The methods used to evaluate the outcome in both cases (mirroring and synchrony as depen-
dent and independent variables) include quantitative, qualitative, or a mix of both methods. The
following subsections describe in more detail the outcome measurements found in the literature
in terms of quantitative and qualitative evaluation methods. Table 3 shows an overview of the
outcome measurements found in the user studies included in this article and the methods used to
measure them.

5.2.1 Quantitative Evaluation Methods. Mirroring and especially synchrony as an independent
variable have been used to investigate the effect they have on the user’s impression of, or likeability
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towards, the robot [39, 49, 65, 109, 111], the user’s general impression of the interaction [21, 49, 96]
or combining both aspects [62, 107]. These outcomes are typically measured quantitatively using
questionnaires, also known as Likert scales [70].

The commonly used Godspeed questionnaire [10], employed in many mirroring and synchrony
user studies [39, 49, 50, 57, 65], measures a robot’s perception among five main items, namely
anthropomorphism, animacy, likeability, intelligence, and safety. In the questionnaire, each of
these items is measured by rating several attributes on a scale from 1 to 5. For example, an
attribute of both perceived animacy and anthropomorphism refers to how artificial or lifelike
the robot is, with rating 1 meaning artificial and 5 lifelike. The advantage of using the Godspeed
questionnaire is that it allows for comparison among studies, thus it has become a common
tool for quantitatively evaluating how a robot is perceived when testing or comparing specific
functionalities.

Besides Godspeed, other validated and known questionnaires have been used in the literature.
For example, to measure specific perceived robot attributes [109, 111], aspects of the interaction
with [49] or via [21] the robot, or both perceived attributes and interaction [62, 68]. In addition, it is
also possible to develop a custom questionnaire, like it was done in [107] and [57], which measures
both the perception of the robot and the interaction. Rueben et al. [99] provide recommendations
regarding the correct usage of questionnaires (“scales”) and their (re-)validation.

When synchrony and mirroring are studied as dependent variables, examples of quantitative
evaluation methods include the use of a questionnaire that asked participants to rate which of
the two dance sessions that they took part in felt more synchronous [54]. The time until learning
converges, in cases where synchrony was used as a feature for intuitive demonstration of an action
for the robot to learn, and the delay between human and robot motions was reported in [3, 92].
Other methods in this category focus more on temporal aspects, such as measuring the total time
of interaction [112], event prediction/velocity [81], lag variability/dwell times [74] and oscillation
periods [83]. The percentage of dwell times is usually used to evaluate relative phase stability (dwell
times represent the relative phase indicating in-phase or anti-phase synchrony). Further related
techniques focus on body aspects and include gesture and behavioral analysis [62, 79, 96, 110] or
the amount of body movement [49, 112]. Other quantitative evaluation methods include measuring
group synchronization in the context of dance [54] and synchrony using an information distance
measure for 3D trajectories [107].

5.2.2 Qualitative Evaluation Methods. Qualitative evaluation methods, when mirroring and
synchrony are studied as independent variables, including discussions between the robot and
participants [39, 96], behavior observations [79, 112], interviews about the impressions of the inter-
action [96] or the robot itself [49] and open-end questions in questionnaires regarding the overall
interaction [21]. When synchrony and mirroring are studied as dependent variable, qualitative
evaluations can also include behavior observation [79].

5.2.3 User Studies Demographics. Table 4 summarizes demographic information on user study
participants derived from papers that report it. From the figures listed in the table, the average
mean age across studies is 25.7 years, with a gender split of about 40% females to 60% males.

A number of studies stand out due to their noteworthy demographics or their specific context:
Participants in [24] were musicians playing the drums with a human conductor. The robotic system
described in [79] interacted with the open public, mostly children. In [98] the participants included
couples with infants at the age of 8 to 30 months. Fujimoto et al. [40] investigated the effects of an
imitation system on children diagnosed with autism. Simmons and Knight [112] focused on the
interaction of children and dancing robots.
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Table 4. Demographics of Participants for User Studies

[108] [96] [39] [69] [62] [111] [21] [38] [50]

Pa
rt
ic
-

ip
an

ts Total 24 12 40 56 90 80 36 20 45
Female 8 6 9 28 59 11 18 10 30
Male 16 6 31 28 31 69 18 10 15

A
ge

(Y
ea

rs
) Range 21–50 19–70 19–35 18–31 17–48 18–24 18–44 20–48 18–31

Mean 28.1 32.1 21.7 20.3 21.9 21.8 22.8 26 20.5
Std.dev. 6.95 14.5 3.05 2.0 4.47 0.93 5.82 5.8 2.7

[48] [72] [81] [65] [54] [117] [49] [73] [109]

Pa
rt
ic
-

ip
an

ts Total 15 8 12 119 27 61 20 6 65
Female 7 4 9 36 14 12 2 2 27
Male 8 4 3 83 13 49 18 4 38

A
ge

(Y
ea

rs
) Range 18–25 – 20–48 22–76 – – – 20–28 20–49

Mean – 28.8 30.8 35.3 22.9 29 23.4 23 –
Std.dev. – – – – 3.98 7 – – –

6 Applications and Scenarios
In mirroring and synchrony HRI studies, it is fundamental to determine the application of the
investigated human-robot system and the interaction context or scenario it is intended to be used
in. This is relevant for making technical decisions because depending on the application or scenario,
different requirements might apply.

Applications in system studies are important because they support the motivation of building
such interaction systems. Scenarios in user studies, on the other hand, are important because
they provide a setting where mirroring and synchrony can be studied in order to gain a better
understanding of their role in interactions. Furthermore, the scenarios used in user studies also
need to be carefully considered with the application of the human-robot system in mind. That way
it is ensured that the used measures and metrics are suitable to make certain conclusions about
what the examined interaction system can contribute to the HRI research field.

This section reviews the applications reported in system studies and the scenarios that are used
in user studies to measure certain outcomes. The covered studies can also be found in the “Scenario”
segment of Table 5.

6.1 Target Applications in System Studies
The most common application of synchronous imitation systems is imitation learning or also
known as learning from demonstration or programming by demonstration. Thus, human-robot
imitation has been inspired by imitation as a social learning concept [133], which allows for a quick
and natural approach to programming human behaviors for humanoid robots [125]. Learning by
imitations has also been proposed as an important feature for cognitive development in robots
[101] and as a means to teach robots human-like motions [33, 87, 90, 119, 122]. Imitation learning
has also been proposed for more specific tasks, such as teaching robots conversational movements
synchronized with the flow of speech [131].

Another common application is imitation as a way of implementing human-like behaviors.
It is argued that imitation is a promising method for effective and intuitive creation of human-
like behaviors [97], while also preserving the goal-directed characteristics of the movement [29].
It has also been used as a means of translating human motion as closely as possible to robot
motion by generating human-like motion within the physical capabilities of the robot [118]. The

ACM Transactions on Human-Robot Interaction, Vol. 13, No. 4, Article 47. Publication date: October 2024.



Body Movement Mirroring and Synchrony in HRI 47:15

Table 5. Summary of Studies Included in This Review Article Organized by the Focus of Study, Body Part
Focus, Use of Sensors, Mapping Technology, Evaluation Method, and the Scenarios Used

Focus of study
System User

Bo
dy

pa
rt

Whole-body
[20, 25, 27, 53, 59, 66, 69, 85, 87,
90, 91, 98, 114, 129, 133, 136]; non-
hum.: [41, 42]

non-hum.: [79, 112]

Arms and head [19, 29, 40, 52, 62, 116, 131] –
Arms and legs [33, 60, 134] –

Arms
[1, 26, 45, 63, 75, 84, 106, 118, 125,
130, 132]; non-hum.: [24, 72, 94]

[3, 4, 39, 48, 50, 76, 83, 117]; non-
hum.: [57, 67, 72, 74, 81, 92, 107,
108]

Head – [96, 109]
Torso [54] [49]

Se
ns

or
s

Optical markers [29, 40, 75, 85, 90, 97, 129] [108, 109]; non-hum.: [73, 81]

Optical markerless
[1, 19, 20, 26, 33, 45, 59, 63, 66, 84,
87, 91, 98, 125, 130, 131, 132, 133,
134, 136]; non-hum.: [24, 94]

[3, 4, 39, 48, 49, 53, 76, 79, 83, 96,
117]; non-hum.: [54, 57, 67, 72, 92,
112]

MoCap/IMU/Force [25, 27, 33, 60, 89, 107, 114] non-hum.: [71, 72]
Other non-hum.: [24] [4, 48]

M
ap

pi
ng

Analytical IK [19, 40, 52, 87, 90, 116, 125, 132, 133] –

Numerical IK [1, 26, 27, 29, 45, 60, 84, 85, 89, 91,
97, 118, 129, 134]; non-hum.: [94]

–

Data driven [33, 59, 66, 114, 131] –
Wizard-of-Oz – [50, 62, 110]

N/A [20, 63, 130]; non-hum.: [24, 100] [76, 83, 107, 117]

Ev
al
ua

tio
n

Quantitative
[47, 52, 54, 75, 114]; non-hum.: [94,
100]

[3, 4, 24, 38, 39, 48, 49, 50, 52, 62,
69, 76, 83, 107, 108, 109, 110, 117];
non-hum.: [21, 41, 54, 57, 65, 67, 72,
74, 81, 92]

Qualitative [19, 20, 59, 63, 87, 118, 125, 129, 130] –

Both
[1, 26, 27, 29, 33, 40, 45, 56, 60, 66, 76,
81, 83, 84, 85, 89, 90, 91, 92, 97, 116,
119, 124, 131, 132, 133, 134, 136]

[53, 96]; non-hum.: [79, 112]

Sc
en

ar
io Movement

[1, 3, 26, 27, 29, 33, 52, 59, 75, 84, 85,
87, 90, 92, 97, 98, 114, 118, 119, 122,
130, 136]; non-hum.: [24, 79, 94]

[3, 4, 38, 40, 48, 50, 52, 53, 107, 108,
117]; non-hum.: [41, 54, 57, 65, 67,
72, 79, 81, 112]

Conversation [98] [39, 49, 62, 69, 96, 109, 111]; non-
hum.: [21]

The default type of robot is humanoid; in works marked with “non-hum.”, the robot is non-humanoid.

concept of mimicry is also used as a natural way to teach human-like behaviors to robots [1]. An
interesting and rather specific application of a reported HRI system is imitation of dance movements
found in [85].
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Teleoperation has been envisioned as a way to directly control robots from observations of
human motion [26, 59, 84]. Using mimicry as a concept to achieve more effective and intuitive
teleoperation, especially for novice users, has been suggested in [94]. Also, teleoperation has been
proposed with a combination of virtual reality to ease the process of learning from demonstration
[52] and as synchronous generalized remote control designed for multiple robotic platforms [27,
114, 130]. Teleoperation in combination with recognition of specific human motions that trigger
robot behaviors has been studied in [136]. For example, recognizing the human performing a swipe
gesture results in the robot performing a hello gesture.

On the other hand, system studies describing a technical system that can only synchronize to but
not mirror human body motion include applications such as motor coordination in joint human-
robot action [75], social learning [3, 92], modeling attention via synchrony [98], and synchronization
in social tasks [24, 79].

6.2 Scenarios and Interaction Context in User Studies
As user studies usually make use of a mirroring or synchrony system in an interactive setting,
it is necessary to design scenarios that allow for testing in the specific interaction context. A
possible purpose of such user studies is to explore how mirroring and synchrony affect the human
perception of the robot: for example, its likeability [50, 109], the impression of dominance [69],
or a good general impression [49, 65]. Other studies seek to investigate the impact on HRI and
communication: for example, by fostering engaging interactions with participants synchronizing
to the agent [108], by strengthening human-robot partnership [38], or by facilitating adaptive
interaction [107]. Some mirroring and synchrony user studies also target the feelings of the human
interactants, for example, by investigating closeness [21] or rapport [39, 96]. Another goal is the
stimulation of resulting actions: for example, by providing motivation for helping [110]. Examples
of specific applications include the interaction with a dancing robot [112], the support of physical
rehabilitation [67] or the behavioral analysis of children’s interactive involvement with a robot via
dancing [79].

Based on interaction settings found in the literature, we split the scenarios into two categories:
movement-based and conversation-based. By movement-based scenarios, we mean the use of an
interaction setting based on movement tasks, where the participant and the robot are moving
in a particular way, while conversation-based scenarios include the use of an interaction setting
based on communicative tasks between the robot and the participant. To get an overview of the
interaction context in which body movement mirroring and synchrony have been explored in
HRI user studies, the following subsections look into how scenarios of these two categories have
been set up and employed. Figure 3 shows a tree representation of the split of scenarios used in
user studies.

6.2.1 Movement-Based Scenarios. Movement-based scenarios in mirroring and synchrony stud-
ies include child-robot interactions such as a robot dancing with children [112] and a robot teaching
a motion task which has to be imitated by a child [40]. Some studies have used video-based interac-
tion rather than live interaction as a method of measuring an outcome. An example of such a study
is described by Stolzenwald and Bremner [117], where the video shows two humans performing a
similar gesture and a robot imitating one of them so the participants could choose which human
the robot is imitating. Gemeinboeck et al. [41] investigate the emergence of the social presence of a
robot through movement. A particularly interesting study is presented by Kashi and Levy-Tzedek
[57], where the authors make use of the Mirror Game as an interactive scenario. The Mirror Game
[88] is a dyadic movement game used as a warm-up activity in the theater where two interaction
partners (A and B) mirror each other’s movement. The game has two modes: (1) leader-follower,
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Fig. 3. Diagram showing different movement-based and conversation-based scenarios used in user studies of
mirroring and synchrony in HRI. Works are sorted chronologically (descending) within each field.

where either A leads and B follows or B leads and A follows, and (2) joint-improvisation, where
there is no designated leader, thus A and B move together while maintaining the mirroring behavior.
This game is relevant because it allows for movement-based interactions with no limitation on
specific body parts or movement range, and recently, it also started getting attention and interest
from research in human interaction. For example, it has been used to study the dynamics between
two people, such as their movement synchrony [34] or to play hand-clapping games [38], the feeling
of individuality versus togetherness in joint improvisation [46], correlations between people’s
mutual attachment and their nonverbal behavior [35] and behavior perception of a robot [3, 107],
in a leader-follower setting [57], or for movement rehabilitation [67].

Synchrony has been studied with scenarios with joint action tasks where a robot and a participant
are sitting opposite on a table and performing pick and place tasks [72, 81]. Other scenario settings
include instructing a participant to perform arm movements, such as moving their arm in a
circular motion while sitting next to a robot that also moves its arm in a circular motion [50].
Arm movement scenarios also include a participant standing opposite of a robot and both moving
their arm horizontally, vertically, and waving at each other [4], or both a robot and a participant
moving their arm in an oscillatory manner but not necessarily performing the same arm movement
[48]. In [52], teleoperation of a robot with a virtual reality setup was developed while paying
attention to user preferences. Different motion patterns to increase familiarity with the robot were
experimented with in [53]. Shen et al. [108] instructed participants to wave with horizontal arm
movements, using only the forearm while observing a robot, a pendulum, and a virtual moving
dot, all moving with the same speed producing wave-like motions. Fitter and Huchenbecker [38]
used clapping games in a study where a robot and a participant standing opposite of each other
performed repeated claps with their opposite hand. In addition, a video-based study used a video
showing a human arranging flowers in a vase while a robot was observing and moving in response
to the human in a home environment [65]. Dance scenarios for movement coordination were
showcased in [54] and [79].

6.2.2 Conversation-Based Scenarios. Conversation-based scenarios in mirroring studies include
participants answering predefined questions asked by a robot [39, 49] or describing a route they
took to get to the lab and more personal information, such as their first memories of the city they
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live in to a robot [96]. In [62], a robot talked about a specific topic and asked a participant questions
as a role of a tutor. In [111], both a robot and a participant were answering questions only with
nonverbal behavior (e.g. nodding for yes, or pointing to a picture to show the correct answer). Other
scenarios include a conversation setting for getting to know each other between a confederate
using a telepresence robot and a participant [21] or a robot giving a speech with the participants
listening and judging the experience [109]. Li et al. [69] used video-based interaction rather than
live, and the video showed a robot and a human having an everyday conversation, in which case
the robot was imitating human’s movements, but also the human was imitating robot’s movement.

7 Discussion and Future Work
Based on the previous findings, we now discuss several noteworthy aspects of the reviewed studies
that we identified for further consideration. While some suggestions for future work arise already
as part of the discussion in Section 7.1, we further point out open questions and relevant trends in
Section 7.2, followed by concluding remarks in Section 7.3.

7.1 Critical Discussion
A major current challenge of mirroring and synchrony in HRI is the only weakly established link
between the technical systems reported and the use of them in user studies. A better understanding
of the technical systems to explore the attitudes of people towards robots or interactional outcomes
would reduce the discrepancy between what is technically feasible and people’s expectations of
what is possible. To this end, we recommend incorporating mutual support between the technical
and user perspective into the design of system studies. This could be implemented at different
levels. For example, a Wizard-of-Oz study should be accompanied by a discussion of the technology
gap between the simulated HRI system and the actual state-of-the-art to convey its proximity to
realization. Another possibility would be to analyze in more detail the deviations in responses
between subjects with and without engineering background in user studies, which may shed further
light on possible technology-induced biases. Generally speaking, our recommendation calls for
collaboration and inclusion of different disciplines, something that is already deeply rooted in the
conception of HRI, and that is only starting to become a practice.

Given the classification of system studies and user studies, which we adopt in the review, we can
identify some challenges for each. In system studies, one of the current challenges that should be
considered is finding quantitative and qualitative evaluation methods of system evaluation that
allow for better comparison between different systems. We recommend that the evaluation should
also include subjective measures, especially with movement experts (e.g., professional dancers,
sports players, physical therapists, animators), since they have a good understanding of human
movements and how they could be translated into robot movements. An iterative approach of
developing and testing the robotic mirroring or synchrony system with user studies should help
with making certain technical and design decisions. Furthermore, evaluation methods in user
studies should also be improved and expanded to include a mix of different evaluation methods.
As Riek et al. [96] recommend in the context of affective HRI, better methods for evaluating the
interaction between a robot and a human need to be created by developing new metrics to measure
interaction outcomes. The authors make this suggestion because the questionnaire they used (taken
from human interaction) did not yield any significant results in their human-robot imitation study.
Bethel and Murphy [13] suggest using at least three methods of evaluation to ensure more valid
and reliable results. More recently, Rueben et al. [99] recommend that existing scales should be
validated in a similar study to the one they were designed for, whereas inadequate scales should be
modified and re-validated to ensure validity and efficacy. So far, self-assessment (via questionnaires)
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is the most common evaluation method in mirroring and synchrony user studies (also visible from
Table 3), sometimes used by itself or in combination with behavior observation.

Considering ethics, a point that has not been addressed is the concerns about the deceptive
behavior of robots, more specifically, whether it is ethical for a robot to express social intelligence
or skills in the same way humans do. If the robot shows human-like abilities which cannot really be
expressed by inanimate objects, how can we make sure that the human is not subject to deception?
The reasoning behind this comes from research in human interactions, where mirroring and
synchrony behavior can be linked to an increase of likeability and rapport between interactants
[121]. Krämer et al. [62] found that mirroring behavior is not always noticeable by humans, which
indicates the importance of the further investigation to assure transparency and avoid possible
deception. The implications of deceiving users in HRI are discussed by Wynsberghe [121] in the
context of care ethics. The author raises concerns about the role of reciprocity in human-robot care
interactions, with the aim of supporting human care providers. Related questions could also be
incorporated into future mirroring and synchrony interaction studies.

7.2 OpenQuestions and Trends
As regards human motion sensing, optical-markerless systems are expected to gain further im-
portance and widespread usage in mirroring and synchrony applications. This trend is driven by
strong progress in the fields of computer vision and machine/deep learning in recent years, which
enables increasingly accurate estimation of 2D and 3D human joint locations from low-cost RGB
cameras. Conceptually, this can be regarded as a shift from relatively costly sensing hardware to
cheap cameras in conjunction with software algorithms and learned models that draw knowledge
from training on large datasets. With the success of deep learning models and their adoption in HRI
research, the acquisition of annotated datasets for usage in training and evaluation of human-robot
mirroring and synchrony scenarios is becoming particularly important.

The chosen human motion sensor and the applied human-robot mapping technology are often
presented independently of each other in the reviewed studies. A more holistic view could reveal
possible inter-dependencies between them. In particular, errors in captured human joint positions
might be suppressed or emphasized by the subsequent mapping process. The extent to which
these combined effects influence the measured quality of the overall imitation or synchronization
system would be an open question for future research and further the identification of meaningful
trade-offs in system design.

While human motion capture can clearly benefit from state-of-the-art deep learning models, a
largely open question is which other modules of a mirroring or synchrony pipeline—for example,
the mapping from human to robot motion—should also incorporate learning-based techniques. On
the one hand, one could argue that well-established models, such as for inverse kinematics, are not
promising candidates for replacement by data-driven approaches. On the other hand, a current
trend towards end-to-end learning suggests a human-robot imitation or synchronization system
where a suitable robot mirroring action is learned from a sufficient amount of paired human-robot
motion samples. However, the acquisition of such annotated datasets is usually time-consuming
but can possibly be alleviated by cross-transfer between different robotic platforms.

Safety in human–robot interaction is a particularly important topic to tackle in future research.
While Dragan et al. [30] study the legibility and predictability of robot motion in human-robot
collaboration, Sciutti et al. [104] argue that mutual adaptation during the interaction can make
the robot more legible and predictable to the human partner. Following this idea, mirroring and
synchrony—which facilitate the adoption and reproduction of human movement patterns by the
robot—could, in turn, make the robot motion easier to interpret and anticipate by the human, thus
fostering safety in joint human-robot actions.
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Other challenges that need to be considered for future research are imposed by dealing with
human data and ethical aspects arising from the interaction itself. This includes finding ways of
informing the human interacting with a robot about how their data is used. Human movement data
captured during mirroring and sychrony interactions contain person-specific movement patterns or
styles whose characteristics may enable the identification of individuals. Privacy of such personal
data is a substantial part in the process of developing transparent and ethical technologies. So far,
the studies included in this review normally do not discuss how human data is or will be handled.

7.3 Concluding Remarks
In this review article, we focused on mirroring and synchrony behaviors usually found in human
interactions and laid out the HRI studies that, in some way, have explored these two phenomena
either from a technological perspective or in an exploratory way. With the growing importance of
nonverbal behavior in HRI research, mirroring and synchrony are expected to receive increased
attention in the future as promising skills for robots to effectively and safely interact with humans.
We addressed technical questions of the human-robot motion transfer and focused on important
aspects of HRI for the evaluation of robotic systems as well as user studies. Suggestions for improved
evaluation strategies and the growing influence of deep learning methods on the development of
human-robot mirroring and synchrony systems were among the points identified for future action.
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