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Abstract. Enhancing logistics vehicles on airport aprons with assistant
and autonomous capabilities offers the potential to significantly increase
safety and efficiency of operations. However, this research area is still
underrepresented compared to other automotive domains, especially re-
garding available image data, which is essential for training and bench-
marking AI-based approaches. To mitigate this gap, we introduce a novel
dataset specialized on static and dynamic objects commonly encountered
while navigating apron areas. We propose an efficient approach for image
acquisition as well as annotation of object instances and environmental
parameters. Furthermore, we derive multiple dataset variants on which
we conduct baseline classification and detection experiments. The re-
sulting models are evaluated with respect to their overall performance
and robustness against specific environmental conditions. The results
are quite promising for future applications and provide essential insights
regarding the selection of aggregation strategies as well as current po-
tentials and limitations of similar approaches in this research domain.

Keywords: dataset design · scene understanding · classification · object
detection · airport apron · autonomous vehicles.

1 Introduction

While many research activities in recent years were focused on increasing the
autonomy of road vehicles, assistant and autonomy functions for vehicles in off-
road domains such as airport environments are still in their infancy. These tasks
pose similar requirements regarding safety and robustness aspects, but must be
executed in a significantly different domain, which hinders a straight-forward
application of existing approaches and datasets. Especially the transition from
classic to learning-based computer vision approaches requires high amounts of
domain-specific image data for training and testing purposes.

Therefore, the aim of this work is to mitigate this data gap by creating a
versatile dataset focusing on apron-specific objects and presenting an efficient
approach for data acquisition, sampling and aggregation, which may serve as a
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precursor for automating mobile platforms in other challenging domains. Image
data was acquired by mounting cameras on multiple transport vehicles, which
were operated in apron and logistics areas throughout multiple seasons. The high
number of captured sequences covers a wide range of data variability, including
variations in environmental conditions such as time-of-day, seasonal and atmo-
spheric effects, lighting conditions, as well as camera-related degradation effects.
Furthermore, an efficient sampling and meta-annotation approach was devel-
oped to automatically extract a representative set of samples from the extensive
amount of recorded image data while minimizing the manual effort required for
annotation. We additionally introduce a novel data aggregation strategy and
provide preliminary models for detecting and classifying apron-specific objects.
To summarize, we propose the following contributions:

– We introduce a novel dataset1 specialized on objects encountered in apron
areas including efficient approaches for image acquisition, dataset design and
annotation.

– We train and evaluate baseline models for classification and detection on
multiple dataset variants and thoroughly quantify the models’ robustness
against environmental influences.

Overall, we believe that our contributions provide vital insights in a novel
and highly relevant application domain as well as universal strategies for efficient
dataset design and experiments setup.

2 Related Work

While detecting and classifying objects encountered on airport aprons represents
a novel application domain, there are several links to prior research, especially
regarding learning and dataset-design approaches as well as existing datasets
containing relevant objects.

Automating apron vehicles requires consistent robustness under a wide range
of challenging environmental conditions. While some works focus on specific
aspects such as variations in either daytime [4], weather [23] or image degradation
[14] for benchmarking models or investigating the variability of existing datasets
[1,2], few of them provide a comprehensive analysis regarding the impact of
multiple factors on model performance [31,37] and neither includes the classes
relevant for the given domain. Capturing the required data for versatile learning
experiments can either be accomplished by complex sensor systems providing
high-quality multi-modal data, as demonstrated by KITTI [8] and ApolloScape
[12] or more portable equipment usually facilitating a significantly higher number
of recording sessions and therefore higher data variability, as shown by Mapillary
[25]. Objects typically encountered on airport aprons include certain common
classes like aircraft or persons, which are part of established datasets, such as
MS COCO [19], PASCAL-Context [24], ADE20K [39] and OpenImages [18].

1 Images and annotations are available at https://github.com/apronai/apron-dataset
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However, their coverage in terms of number and variability in these datasets is
rather limited. Additionally, a number of dedicated datasets is available for the
category of persons [34,38,3,40]. Similarly, different types of aircraft are provided
by specialized datasets offering a more fine-grained categorization [22,31], as well
as top-view or satellite [21,33,29] imagery.

The majority of relevant classes for the target application, however, is highly
specific to the airport domain and rarely occurs outside it. This includes objects
such as specialized airport vehicles, traffic signs or containers, which are rarely
captured due to safety-related access restrictions. To the best of our knowledge,
the presented dataset is the first to put the focus not only on airplanes, but the
entire environment of airport aprons.

3 The Apron Dataset

Automating transport vehicles on airport aprons requires a reliable perception of
this highly specialized environment. Therefore, the dataset’s label specification
is focused mainly on multiple types of apron vehicles, but also includes other
kinds of static and transient obstacles. Ensuring the necessary relevance and
efficiency in creating the dataset requires a consistent strategy across all stages
of dataset design, as presented in the following subsections.

3.1 Data Acquisition

To match the requirements of the intended application as closely as possible, data
acquisition was conducted in a realistic environment from the transport vehicle’s
expected point of view. Therefore, cooperating with a commercial airport was
essential to gain access to transport vehicles in regular operation. However, this
critical infrastructure implies that compliance with safety and legal considera-
tions was required, such as preserving the privacy of passengers and airport staff,
as well as ensuring that the recording campaign never interferes with airport and
logistics operations. All image data was recorded using Nextbase 612GW dash-
cams with a resolution of 3860x2160 pixels, providing sufficient image quality
combined with low cost and efficient handling. They were mounted on the inside
of the windshields of two container-transport vehicles. To ensure that recordings
are paused when the vehicle is inactive, their power supply was coupled to the
respective engines. To increase the flexibility for later applications, one of them
was modified to incorporate a lens with 90° field of view instead of the built-in
lens with 150°. Most of the data was captured in time-lapse mode at 5 fps to pro-
vide a data variability sufficiently representing the environment. Furthermore,
the recordings were complemented by sequences at 30 fps for demonstration
purposes as well as future developments such as multi-object tracking.

Over a time period of six months we recorded 1715 image sequences, covering
the seasons of spring, summer and autumn. Since transport vehicles typically
traverse between multiple locations in logistics and apron areas, these recordings
conveniently contain all kinds of objects encountered along their routes. On
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the other hand, they include irrelevant sections with low scene activity during
parking or moving along monotonous regions, as well as motion blur and noise,
which need to be pruned as a first step during annotation.

3.2 Sequence and Image Annotation

While removing highly redundant or irrelevant data, each remaining sequence is
additionally assigned a defined set of parameters to specify the environmental
factors during recording time.

– Time of Day describes the variance between natural and artificial light
sources throughout the day.

– Lighting specifies sunny and diffuse conditions during daytime based on the
appearance of shadows and is undefined for night recordings.

– Atmosphere differentiates multiple weather and atmospheric effects.
– Scene Dynamics is a measure for the number and activity of dynamic objects

in a sequence, as well as variations due to motion of the capturing vehicle.

Fig. 1. Distribution of Scene Dynamics for total and annotated images

We eventually selected 1209 sequences representing a pool of more than 3.2
million images in total. They were sampled at varying rates proportional to the
parameter Scene Dynamics aiming to reduce redundancies and extract a repre-
sentative set of approximately 10k images. As demonstrated in Fig. 1, sequences
tagged as Busy and Very Busy are oversampled by 25% and 50% respectively,
whereas Calm and Very Calm scenes are undersampled analogously. Addition-
ally, the few remaining redundant images, recorded when the vehicle was stopped
with the engine running, were manually removed. The final set of 10098 images is
annotated with additional per-image parameters. Degradation summarizes mul-
tiple factors expected to negatively influence model performance as shown in
Fig. 2. While these factors typically appear simultaneously, the parameter is set
to High if any of them significantly influences image quality. Emphasis is placed
on near- and mid-range objects in a distance of up to 100 meters.

The distribution of parameters for all annotated frames is displayed in Fig.
3. Time of Day variations are well balanced due to the airport operating hours
including dawn, dusk and a significant proportion of the night. Lighting condi-
tions are annotated only for 68% of the dataset since the parameter does not
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Fig. 2. Representative examples for sequence and image parameters. Time of day dif-
ferentiates between Day (a), Twilight (b) and Night (c), Lighting between Sunny (d)
and Diffuse (e) and Atmosphere between Clear (f), Rain (g) and Heavy Rain (h), with
rain drops significantly impacting perception. The assigned state of Low or High for
Degradation typically depends on multiple factors such as under- (i) and overexposure
(j), windshield reflections (k, l), motion blur (m) and wiper occlusions (n)

Fig. 3. Per-instance distribution of annotated meta parameters and object sizes (Small
< 15k pixels < Medium < 45k pixels < Large)

apply to night recordings and ambiguous sequences containing both Sunny and
Diffuse states. However, the remaining images are roughly evenly distributed,
therefore representing a solid basis for evaluating their impact on detection and
classification performance. Atmospheric effects, on the other hand, show a strong
bias towards Clear conditions and thereby represent the environment encoun-
tered during the recording time. Nevertheless, the data includes a small number
of images of Rain and Heavy Rain as well as Fog, which are useful for prelim-
inary insights regarding the impact of harsh weather conditions as well as the
generalization capability of trained models.

3.3 Instance Annotation

Specifying a set of object labels tailored to the target application requires an
extensive analysis of sampled images to identify visually distinct categories for
frequently appearing types of vehicles and obstacles. Additionally, safety-relevant
classes are considered independently of their occurrence frequency. We aim at
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annotating a fine-grained definition of classes which can be further condensed
for training specialized models on more coarse-grained dataset variants. For this
purpose, we define 43 categories, which are fully listed in the supplementary
material and visualized in Fig. 4.

Fig. 4. Representative examples of different object categories included in the dataset

For each category we define a detailed textual specification along with mul-
tiple selected sample patches to minimize ambiguous assignments and resolve
potential corner cases at an early stage. Since the focus is placed on near- and
mid-range objects, the minimum size of annotated objects is defined as 28 pixels
for vehicle classes and 12 pixels for traffic signs and persons along either di-
mension. Across the entire set of selected images, this results in a total of more
than 169k object instances localized as bounding boxes and assigned one of the
defined categories. Additionally, objects are tagged as occluded if they are not
fully visible due to other objects or truncated at image borders.

It is well known that object-occurrence frequency in real-world images often
follows a long-tailed distribution [20], [27], which is also visible in this case, as
demonstrated in Fig. 5. The overabundance of a few head classes with the nu-
merous tail classes collectively still making up a significant portion of the data
[41] is challenging for learning systems. The environment on airport aprons is
generally relatively structured and controlled but also crowded with an average
of 16.8 objects per image. Compared to the total number of samples the object
occurrence in terms of images containing a certain category, is more evenly dis-
tributed, indicating that especially head classes tend to appear in multitudes
within a single image. The distribution of object sizes and its relation to the
occurrence frequency is of additional interest, especially for the detection task.
The mean of about 80k pixels and a surprisingly low median of 9k pixels indicate
that a relatively low number of classes with exceedingly large objects stands in
contrast to a large number of classes with small to medium objects.

While the method of image acquisition and the label definition affect these
dataset statistics, the long-tailed distribution can be mitigated by exploiting the
closed-off, controlled and repetition-driven nature of airport apron processes.
Therefore, it might be easier to create accurate and robust models for this domain
than it is for other automotive applications and we believe our dataset showcases
a promising way to efficiently accumulate data for this purpose.
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Fig. 5. Top: numbers of samples annotated for each object category (light color) and
images containing them (dark color). Bottom: normalized size distribution: (Large
> 45k pixels > Medium > 15k pixels > Small)

3.4 Data Aggregation

By mapping selected classes of the annotated data we define three variants to
facilitate a comparative analysis of dataset balancing effects.

– Fine is the baseline variant including all 43 annotated labels
– Top limits the dataset to the 25 most frequent classes in terms of total object

occurrence which contribute roughly 97% of samples
– Coarse uses the full set of instances but remaps them to only 23 superclasses

based on semantic similarity

For all experiments described below, 68% of each dataset are used for train-
ing and 17% for validation, while the remaining 15% of samples are withheld
during the experiments and exclusively reserved for testing purposes. This split
is applied on a per-sequence basis to reduce the effects of over-fitting.

4 Fine-grained Classification

Fine-grained image classification focuses on correctly identifying differences be-
tween hard-to-distinguish object (sub-)classes and predicting the specific vari-
ants accordingly. Taking a look at Fig. 4 and the corresponding categories shown
in Fig. 5, many visually similar yet distinct classes can be observed in the Apron
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dataset: multiple types of container trolleys, aircraft, traffic signs and specialized
cars and trucks are all commonly encountered on aprons. To correctly differenti-
ate such visually similar classes, feature representations need to be rich in detail.
On the other hand, the overall object variety requires a well generalized model,
which makes the classification task especially challenging. While classification of
object instances also takes place implicitly in detection architectures, a stand-
alone, fine-grained classifier can be tuned and optimized more easily to gain vital
insights regarding dataset variability and the final application setup.

Evaluation Metrics For evaluating classification performance a multitude of
metrics with different advantages and drawbacks has emerged [30], though lit-
erature on classification metrics in the context of computer vision is sparse [9].
Top-1 accuracy (α), defined as the number of correct classifications over the num-
ber of ground-truth samples, has been reported on CIFAR [17] and ImageNet
[5] and is still widely used [15,6,36,35,28]. However, on datasets with significant
class-imbalance or long-tailed characteristics α leads to unintuitive results, since,
for example, a model evaluated on a dataset with 90% of samples s belonging
to class A and only 10% to class B achieves an α value of 90% by simply always
predicting ’A’. This score of exclusively predicting the most frequent class is
defined as the null accuracy α0, where si is the number of samples of class i and
s is the total number of samples:

α0 =
max{s1, . . . , sn}

s
(1)

To evaluate the significance of α, it should be compared to α0 as well as to
the random accuracy αr, which represents the score if predictions are equally
distributed over the number of classes (n).

αr =
1

n
(2)

Moreover, α is prone to be even more biased in the case of top-x accuracy
with x > 1 where a sample counts as correct if the true label is within the xmost-
confident model predictions. Therefore, we use the less biased metric of per-class
average recall (r̄) for selecting the best performing models of each experiment
and evaluating all fine-grained classification models. This metric represents the
average of class-wise Top-1 accuracies, as used by e.g. [19], rendering each class
equally important independent of the number of samples assigned to it.

r̄ =
1

n

n∑
i=1

TPi

TPi + FNi
(3)

Additionally, we employ the metric of per-class average precision (p̄) cal-
culated analogously as the average ratio between true positives and the total
number of predictions for each class:
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p̄ =
1

n

n∑
i=1

TPi

TPi + FPi
(4)

In formulas above, TPi and FPi denote the number true and false positive
classifications for class i, respectively, while FNi is the corresponding number
of false negatives. To improve clarity when comparing results, we furthermore
report the f1 score as the harmonic mean of both measures.

f1 = 2× p̄× r̄

p̄+ r̄
(5)

Setup and Optimization We conducted a two-fold validation for comparing
multiple ResNet [11] and EfficientNet [32] architectures and tuning their hyper-
parameters based on r̄. Eventually, we chose EfficientNet-B3 since it outperforms
the ResNet variants and can conveniently be adapted to specific data using a
single scaling coefficient for modifying width, depth and image scale.

Object instances below 30 pixels along both dimensions or an aspect ratio ex-
ceeding 10:1 were excluded, slightly reducing the original dataset to roughly 150k
samples. After evaluating multiple image-augmentation techniques, the best re-
sults were observed using a random horizontal flip before resizing to the required
input size of 300 pixels. An additional application of random crop and Gaussian
blur did not improve results on the validation set, indicating that the visual vari-
ability in the Apron dataset is already significant. It could be observed, however,
that predictions on classes with relatively few samples were more accurate using
stronger augmentations, since they benefit more from the additional variability.

All models were trained from scratch for 40 epochs using the SGD optimizer
with a learning rate of 0.1, which yielded slower but stable convergence unlike
Adam [16], as is often the case in PyTorch [26]. We updated the learning rate
every 10 epochs, using a step ratio of 0.1 and a weight decay of 0.0005. The
experiments were conducted on an NVIDIA RTX 2080 Ti using a batch size of
128. Furthermore, we used the Swish activation function, a CrossEntropy loss
with a dropout rate of 0.3 and Kaiming uniform [10] parameter initialization.

4.1 Classification Results

Table 1 shows the results obtained on the respective test sets of all three dataset
variants. The baseline variant Fine poses a significant challenge, but the corre-
sponding model still obtains an f1 score of 68.2%. As expected, leaving out low-
frequency classes (Top) or merging them to superclasses (Coarse) significantly
improves performance by up to 12.6%. Precision p̄ tends to be only slightly higher
than recall r̄ despite the long-tailed class distribution of the dataset, indicating
consistent classification performance across most classes. As expected, obtained
α-scores are far above r̄, giving a skewed and less distinctive impression of the
models’ performance and are therefore omitted for more detailed comparisons.
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Table 1. Classification results on the Fine (F ), Top (T ) and Coarse (C ) dataset
variants as average recall, average precision and f1 score, as well as top-1, null and
random accuracy. The last two columns specify the numbers of samples in the test sets
and the entire dataset variants, respectively

r̄ p̄ f1 α α0 αr sT s

F 0.624 0.752 0.682 0.866 0.184 0.023 22.6k 150.6k
T 0.779 0.810 0.794 0.880 0.193 0.040 21.9k 145.9k
C 0.819 0.798 0.808 0.881 0.213 0.044 22.6k 150.6k

∅∅∅ 0.741 0.787 0.762 0.876 - - - -

4.2 Robustness Analysis

To gain more detailed insights regarding the impact of environmental effects on
model performance we filter the test sets by each of the parameters defined in
Section 3.2 as well as object size and occlusion. The corresponding evaluations on
each resulting set are presented in Tables 2 and 3. Distributions of test sets are
similar to those of the overall dataset presented in Fig 3. Note that the samples
do not cover the entire test set for the Lighting and Atmosphere parameters. In
the former case this results from the parameter not applying to Night settings,
while in the latter case all underrepresented conditions were omitted.

Table 2. Impact of environmental conditions on classification performance as deviation
from overall f1 scores (Table 1) for each model on the corresponding test set

Time of day Lighting Degradation Atmosphere
Day Twilight Night Sunny Diffuse Low High Clear Rain

F -0.020 -0.025 -0.005 0.015 -0.008 -0.005 -0.007 0.005 -0.101
T 0.003 0.006 -0.013 0.006 0.006 0.005 -0.028 0.000 -0.008
C 0.006 -0.012 -0.011 0.018 -0.007 0.008 -0.011 0.002 -0.039

∅∅∅ -0.004 -0.011 -0.009 0.013 -0.003 0.003 -0.015 0.003 -0.049

Overall, as visible in Table 2, both the positive and negative deviations are
relatively small across all dataset variants and parameters, indicating that most
conditions are sufficiently covered in the dataset. Since the recording vehicles
accumulated image data over a long period of time, they encountered a wide
variety of conditions expected during long-term autonomous operation. The least
deviation is reported between the different times of day. Since all three values
are extremely small and recall and precision values are averaged across classes,
the offsets of underrepresented classes can even sufficiently distort results for all
deviations to be negative in this case. The trends are more clearly visible for
the lighting and degradation parameters, where sunny conditions and low image
degradation appear to be the least challenging for all models. The strongest
negative impact is visible for light rain which reduces the f1 score by more than
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5% compared to clear atmosphere. It is possible that the model learns more
ambiguous and blurred filters for rainy samples and as such the predictions are
spread more equally across all classes. On the other hand, for samples with clear
sight, the learned filters might be very class-specific and overfit on the classes
with many samples, since this phenomena is most noticeable for Fine.

Table 3. Impact of object size (Small < 15k pixels < Medium < 45k pixels < Large)
and occlusion on classification performance as deviation from overall f1 scores (Table
1) for each model on the corresponding test set

Object size Occlusion
Small Medium Large True False

F -0.066 0.001 -0.042 0.003 0.004
T -0.070 0.001 0.013 -0.001 0.033
C -0.071 0.012 0.033 -0.004 0.025

∅∅∅ -0.069 0.005 0.001 -0.001 0.021

As expected, Table 3 shows that all models perform significantly better for
medium-sized and large objects than for those smaller than 15k pixels. The
models seem to be suitable for fine-grained classification tasks where objects
are relatively close and largely depicted and therefore most relevant for the
intended application scenarios, while tiny and distant objects are more prone to
errors. Furthermore, the difference in scores depending on occlusion of objects
is relatively low, since more than 90% of all objects in the entire dataset are
occluded, providing a rich set of representative training examples.

5 Detection

Based on the insights and promising results gained during our classification
experiments, the next step towards the real-world application of autonomous
vehicle operation is to analyze entire scenes by localizing and simultaneously
classifying objects using an end-to-end detection approach.

Evaluation Metrics We evaluate the results based on the established average-
precision (AP) metric defined as the area under the precision-recall curve for
each class. But instead of using a single IoU threshold to distinguish between
correct and incorrect detections as traditionally used in detection challenges such
as Pascal VOC [7], we average the results over 10 IoU thresholds ranging from 0.5
to 0.95, as suggested by the COCO challenge [19]. The reported overall values are
subsequently averaged over all available classes of the respective dataset variant.

Setup and Optimization We conducted the experiments using an existing
implementation of YOLOv5 (release 6.1) [13] and compared the results of the
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small, medium and large architectures on the defined dataset variants. All images
were scaled to 1280 pixels along each dimension and subjected to standard data
augmentation. We trained on a system with two NVIDIA RTX 3090, using the
SGD optimizer with a linear learning rate of 0.01 and a batch size of 16. All
models were initialized with the pre-trained weights provided by the authors of
[13]. For each combination of architecture and dataset variant we selected the
best-performing model out of 50 training epochs based on the validation results.

5.1 Detection Results

As visible in Tab. 4, performance increases with model complexity. Analogous to
the original experiments on the COCO dataset [13] the gain is more significant
between the small and medium than between the medium and large architecture.

Fig. 6. Representative detection results of the Coarse model on the corresponding test
set (green: correct detection (TP), orange: correct localization, but incorrect class, red:
incorrect detection (FP), blue: undetected ground-truth object (FN ))

For each architecture, the dataset variant with the highest granularity (Fine)
serves as a baseline, since it is the most challenging. As expected, limiting the
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Table 4. Detection APs on the Fine (F ), Top (T ) and Coarse (C ) datasets variants
by model architecture on the corresponding test sets. For comparing the expected
computational complexity, the numbers of parameters and floating point operations
(FLOPs) for each model are given as stated in [13]

YOLOv5s6 YOLOv5m6 YOLOv5l6

Parameters 12.6M 35.7M 76.8M
FLOPs 16.8B 50.0B 111.4B

F 0.364 0.415 0.435
T 0.441 0.480 0.501
C 0.473 0.514 0.526

∅∅∅ 0.426 0.470 0.487

label categories to the 25 most frequent ones (Top) and thereby reducing the
total number of samples improves the score. However, the highest robustness
is achieved by the variant combining semantically similar object categories and
thereby using all available samples (Coarse), which results in a similar number
of classes but higher variability. The evaluation therefore indicates that limiting
the number of classes by remapping provides a superior alternative to simply
omitting under-represented classes regarding accuracy as well as flexibility.

The high performance indicated by the scores using the challenging COCO
metric is also noticeable in the qualitative results presented in Fig. 6. The model
is well capable of handling occlusions in crowded scenes as well as varying envi-
ronmental conditions, including different times of day, as well as moderate image
degradation, as visible in the upper two rows. However, effects such as strong
motion blur and significant underexposure decrease detection performance, as
visible in the lower right visualization. Furthermore, even small objects can ro-
bustly be localized in most cases. However, they are more prone to being assigned
wrong categories, as discussed in section 4.2 and depicted in the lower left image.

5.2 Robustness Analysis

To quantify the influence of environmental effects on detection performance, we
evaluate all models based on the filtered test sets analogously to Section 4.2,
as shown in Table 5. As an indicator for the significance of each parameter
the number of corresponding samples in the test set for the Fine and Coarse
dataset variants are specified, with the number for Top being marginally smaller.
As described for the classification results in Section 4.2, the total number of
samples for each parameter does not necessarily cover the entire dataset.

The slight impacts that can be observed are strongest for changes in lighting
conditions as well as image degradation. Since operating areas are well lit at
night, the results for the Time-of-day parameter confirm that a single model is
suitable for operating 24 hours a day. Furthermore, light rain can be handled
well with only a slight decrease in performance, while more challenging weather
effects require more training and test data.
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Table 5. Average impact of environmental conditions as absolute deviation from over-
all detection APs (Table 4) on each test set across all three selected model architectures

Time of day Lighting Degradation Atmosphere
Day Twilight Night Sunny Diffuse Low High Clear Rain

sT 6.9k 4.5k 5.6k 5.8k 5.4k 13.6k 3.4k 16.1k 0.6k

F 0.039 -0.004 -0.001 0.037 0.027 0.002 0.002 0.002 0.058
T 0.003 0.031 0.005 0.000 0.000 0.002 -0.021 0.000 -0.019
C 0.016 -0.006 -0.003 0.025 -0.010 0.009 -0.030 0.003 -0.041

∅∅∅ 0.019 0.007 0.000 0.021 0.006 0.004 -0.016 0.002 -0.001

6 Conclusion

In this work, we demonstrated the process of creating an extensive dataset for
the novel application domain of autonomous operation on airport aprons. We in-
troduced efficient concepts for image acquisition and annotation before training
and evaluating models for classification and detection based on multiple vari-
ants of the dataset. Additionally, we enriched the analysis with annotations of
environmental conditions and quantified their impact on model performance.

The results show that our models are already capable of robustly detect-
ing and classifying most relevant near and mid-range objects, rendering them a
promising foundation for the further development of assisted and autonomous
vehicle operation in this application domain. We achieved our aim of training
robust models covering variable conditions at the specific airport used for record-
ing the dataset. While we are aware that the resulting models do not seamlessly
generalize to different locations and novel object classes, our dataset and the
presented insights represent a valuable basis for significantly reducing the effort
and required data to specialize on other airport environments.

We plan to evaluate the resources required for specializing our models and
dataset to novel locations by recording additional training and test data at other
airports to gain further insights on the re-usability of our concepts and data and
their combination with additional approaches. Especially combining the results
with multi-object tracking facilitating the propagation of object instances over
time holds the potential to further increase detection robustness and facilitate
embedded real-time processing on a mobile vehicle.

Acknowledgement. We would like to thank the Federal Ministry for Climate
Action, Environment, Energy, Mobility, Innovation and Technology, and the Aus-
trian Research Promotion Agency (FFG) for co-financing the ”ICT of the Fu-
ture” research project AUTILITY (FFG No. 867556). Additionally, we want to
thank our project partner Linz Airport, Quantigo AI and our annotation team
consisting of Vanessa Klugsberger, Gulnar Bakytzhan and Marlene Glawischnig.

160



Towards Scene Understanding on Airport Aprons 15

References

1. Asudeh, A., Jin, Z., Jagadish, H.: Assessing and remedying coverage for a given
dataset. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE).
pp. 554–565. IEEE (2019)

2. Auer, S., Demter, J., Martin, M., Lehmann, J.: Lodstats–an extensible framework
for high-performance dataset analytics. In: International Conference on Knowledge
Engineering and Knowledge Management. pp. 353–362. Springer (2012)

3. Braun, M., Krebs, S., Flohr, F.B., Gavrila, D.M.: Eurocity persons: A novel bench-
mark for person detection in traffic scenes. IEEE Transactions on Pattern Analysis
and Machine Intelligence pp. 1–1 (2019)

4. Dai, D., Van Gool, L.: Dark model adaptation: Semantic image segmentation from
daytime to nighttime. In: 2018 21st International Conference on Intelligent Trans-
portation Systems (ITSC). pp. 3819–3824. IEEE (2018)

5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009)

6. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020)

7. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The
pascal visual object classes (voc) challenge. International journal of computer vision
88(2), 303–338 (2010)

8. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The kitti
dataset. The International Journal of Robotics Research 32(11), 1231–1237 (2013)

9. Grandini, M., Bagli, E., Visani, G.: Metrics for multi-class classification: an
overview. arXiv preprint arXiv:2008.05756 (2020)

10. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: Proceedings of the IEEE interna-
tional conference on computer vision. pp. 1026–1034 (2015)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

12. Huang, X., Wang, P., Cheng, X., Zhou, D., Geng, Q., Yang, R.: The apolloscape
open dataset for autonomous driving and its application. IEEE transactions on
pattern analysis and machine intelligence 42(10), 2702–2719 (2019)

13. Jocher, G., Nishimura, K., Mineeva, T., Vilariño, R.: yolov5. Code repository
https://github. com/ultralytics/yolov5 (2020)

14. Kamann, C., Rother, C.: Benchmarking the robustness of semantic segmentation
models with respect to common corruptions. International Journal of Computer
Vision 129(2), 462–483 (2021)

15. Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S.: A survey of the recent architec-
tures of deep convolutional neural networks. Artificial intelligence review 53(8),
5455–5516 (2020)

16. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

17. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images. Tech. rep., University of Toronto (2009)

161



16 D. Steininger et al.

18. Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., Ka-
mali, S., Popov, S., Malloci, M., Kolesnikov, A., et al.: The open images dataset
v4. International Journal of Computer Vision pp. 1–26 (2020)

19. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: European conference
on computer vision. pp. 740–755. Springer (2014)

20. Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed
recognition in an open world. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 2537–2546 (2019)

21. Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P.: Can semantic labeling meth-
ods generalize to any city? the inria aerial image labeling benchmark. In: IEEE
International Geoscience and Remote Sensing Symposium (IGARSS). IEEE (2017)

22. Maji, S., Rahtu, E., Kannala, J., Blaschko, M., Vedaldi, A.: Fine-grained visual
classification of aircraft. arXiv preprint arXiv:1306.5151 (2013)

23. Michaelis, C., Mitzkus, B., Geirhos, R., Rusak, E., Bringmann, O., Ecker, A.S.,
Bethge, M., Brendel, W.: Benchmarking robustness in object detection: Au-
tonomous driving when winter is coming. arXiv preprint arXiv:1907.07484 (2019)

24. Mottaghi, R., Chen, X., Liu, X., Cho, N.G., Lee, S.W., Fidler, S., Urtasun, R.,
Yuille, A.: The role of context for object detection and semantic segmentation in
the wild. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 891–898 (2014)

25. Neuhold, G., Ollmann, T., Rota Bulo, S., Kontschieder, P.: The mapillary vistas
dataset for semantic understanding of street scenes. In: Proceedings of the IEEE
international conference on computer vision. pp. 4990–4999 (2017)

26. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. In: Advances in neural information processing
systems. pp. 8026–8037 (2019)

27. Salakhutdinov, R., Torralba, A., Tenenbaum, J.: Learning to share visual appear-
ance for multiclass object detection. In: CVPR 2011. pp. 1481–1488. IEEE (2011)

28. Shen, Z., Savvides, M.: Meal v2: Boosting vanilla resnet-50 to 80%+ top-1 accuracy
on imagenet without tricks. arXiv preprint arXiv:2009.08453 (2020)

29. Shermeyer, J., Hossler, T., Etten, A.V., Hogan, D., Lewis, R., Kim, D.: Rareplanes:
Synthetic data takes flight (2020)

30. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for
classification tasks. Information processing & management 45(4), 427–437 (2009)

31. Steininger, D., Widhalm, V., Simon, J., Kriegler, A., Sulzbachner, C.: The aircraft
context dataset: Understanding and optimizing data variability in aerial domains.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 3823–3832 (2021)

32. Tan, M., Le, Q.V.: Efficientnet: Rethinking model scaling for convolutional neural
networks. arXiv preprint arXiv:1905.11946 (2019)

33. Xia, G.S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M.,
Zhang, L.: Dota: A large-scale dataset for object detection in aerial images. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 3974–3983 (2018)

34. Xiao, T., Li, S., Wang, B., Lin, L., Wang, X.: Joint detection and identification
feature learning for person search. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition. pp. 3415–3424 (2017)

162



Towards Scene Understanding on Airport Aprons 17

35. Xie, C., Tan, M., Gong, B., Wang, J., Yuille, A.L., Le, Q.V.: Adversarial exam-
ples improve image recognition. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 819–828 (2020)

36. Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves
imagenet classification. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 10687–10698 (2020)

37. Zendel, O., Honauer, K., Murschitz, M., Steininger, D., Dominguez, G.F.:
Wilddash-creating hazard-aware benchmarks. In: Proceedings of the European
Conference on Computer Vision (ECCV). pp. 402–416 (2018)

38. Zheng, L., Zhang, H., Sun, S., Chandraker, M., Yang, Y., Tian, Q.: Person re-
identification in the wild. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 1367–1376 (2017)

39. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing
through ade20k dataset. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 633–641 (2017)

40. Zhu, P., Wen, L., Du, D., Bian, X., Fan, H., Hu, Q., Ling, H.: Detection and track-
ing meet drones challenge. IEEE Transactions on Pattern Analysis and Machine
Intelligence pp. 1–1 (2021)

41. Zhu, X., Anguelov, D., Ramanan, D.: Capturing long-tail distributions of object
subcategories. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 915–922 (2014)

163


	Towards Scene Understanding for Autonomous Operations on Airport Aprons

