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Abstract. Visual semantic context describes the relationship between
objects and their environment in images. Analyzing this context yields
important cues for more holistic scene understanding. While visual se-
mantic context is often learned implicitly, this work proposes a simple
algorithm to obtain explicit priors and utilizes them in two ways: Firstly,
irrelevant images are filtered during data aggregation, a key step to im-
proving domain coverage especially for public datasets. Secondly, context
is used to predict the domains of objects of interest. The framework is
applied to the context around airplanes from ADE20K-SceneParsing,
COCO-Stuff and PASCAL-Context. As intermediate results, the con-
text statistics were obtained to guide design and mapping choices for the
merged dataset SemanticAircraft and image patches were manually an-
notated in a one-hot manner across four aerial domains. Three different
methods predict domains of airplanes: An original threshold-algorithm
and unsupervised clustering models use context priors, a supervised CNN
works on input images with domain labels. All three models were able to
achieve acceptable prediction results, with the CNN obtaining accuracies
of 69% to 85%. Additionally, context statistics and applied clustering
models provide data introspection enabling a deeper understanding of
the visual content.

Keywords: context encoding · domain prediction · aerial scenes

1 Introduction

Humans intuitively incorporate contextual information when trying to under-
stand the environment they perceive. Objects appearing in an unfamiliar se-
mantic context or out-of-context objects [7], such as airplanes on a highway,
attract the observer’s attention since they are typically related to other scenes.
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Fig. 1: Upper half: For every source dataset d, context vectors C on images (img)
and object bounding boxes (box) as well as the respective quadrants q are ob-
tained. Merging leads to Ci and Cq for instances and quadrants, removal of other-
patches yields Ci,no other and Cq,no other. All image patches Ii and Iq were then
annotated with domain labels li and lq. Lower half: Either the set of context
vectors or images with annotations were finally used for domain prediction.

Incorporating this kind of prior information has the potential to improve com-
puter vision (CV) models by assigning meaning to objects and actions, enabling
”visual common-sense” and is essential for solving upcoming challenges in scene
understanding [1]. In particular, autonomous systems operating in the real world
struggle to stay robust when traversing multiple environments, or the surround-
ings look significantly different due to weather, atmospheric effects, or time of
day. Semantics of images or semantic parsing in the field of CV refers to the
recognition and understanding of the relationship between objects of interest
other objects and their environment [7]. Natural occurrences of objects and cor-
responding environments are analyzed to transfer this information into a logical-
form representation, understandable for machine vision systems. This context
can be understood as a statistical property of our world [19]. On a micro level
semantic segmentation yields information regarding both foreground objects,
commonly referred to as things [17] and background scenery, known as stuff [4].
Following this segmentation and applying ideas from natural language processing
semantic relations between things and stuff can be formulated. It is well known
that cues stem from the semantic context surrounding objects and this visual
context is therefore a necessity for more complete scene understanding [5]. The
models developed in this work are evaluated in the field of avionics, specifically
on images showing airplanes. Therefore, the related concept of domains in this
work holds two specific yet congruent meanings: In the applied sense, a domain
describes the local real world surroundings of airplanes, in the more formal sense
a domain can be understood as a collection of characteristic classes. The syn-
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tactic evolution from semantic context to domains is natural, when considering
the focus lies on a person, object or autonomous agent around which context is
formulated. Domains can therefore be understood as a result of the analysis of
an objects semantic context, placing things into a distinctive domain. Following
the analysis of this visual semantic context, characteristic statistics can give an
understanding of datasets which can in turn be used to guide data-aggregation
strategies. Further along the learning pipeline, due to the convolutional kernel in
convolutional neural network (CNN), contextual information is usually learned
implicitly regardless of the learning task at hand [2,26]. Contextual information
is embedded in the feature space and the learned kernel-parameters lead to the
well-known bias/variance dilemma [12]. An explicit representation of context in
the form of distinct domains might allow intelligent systems to swap between
model parameters in a mixture-of-experts fashion. To this end the preliminary
step of predicting domains is studied (see Figure 1 for an overview of the pro-
posed methods). To summarize, this work makes the following contributions:

1. We propose a simple method to encode semantic context from segmentation
masks providing context insights for images from the aerial domain.

2. We present the merged dataset SemanticAircraft and filter images using
context statistics. Additionally, we provide over 17k domain annotations for
SemanticAircraft.

3. We use unsupervised clustering algorithms for data introspection revealing
further information relevant to avionic applications. Finally, we reinterpret
clustering results for domain prediction, propose a novel, fast and inter-
pretable prediction algorithm as baseline and compare these results to do-
main classification results using deep supervised CNNs.

The remainder of the paper is structured as follows: Section 2 provides related
works. Section 3 details the encoding algorithm, shows context results and ex-
plains the domain annotation process for SemanticAircraft. Section 4 introduces
the three domain prediction models and provides inference results.

2 Related Works

Following classification, object detection and semantic segmentation, a clear
trend towards more complex representations is noticeable [16,32]. Before CNNs,
semantic segmentation used either conditional random fields (CRFs) or tree
models similar to Markov networks [22,23], although with limited accuracy.

2.1 Semantic Segmentation with Deep Learning

In a similar vein to works using CRFs is Wang et al. [29]’s multiple-label classifi-
cation on NUS-WIDE [8], COCO [17] and VOC [10]. They combine a VGG [28]
CNN to embed visual features with a LSTM-RNN for label information in a joint
space. Zhang et al. [34] pose the question whether capturing contextual infor-
mation with a CNN is the same as simply increasing the receptive field size but
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perhaps more accurately the question should be how much one can increase the
receptive field size and still capture relevant contextual information. In a similar
vein Fu et al. [11] state that the method with which to effectively capture pixel
or region-aware context is still an open and unresolved research question. While
these works provide models for obtaining semantically segmented images, neither
the learned features nor final masks constitute an explicit context representa-
tion that is in line with our concept of visual domains. The literature on domain
adaptation techniques [31,30,9] on the other hand is predominately concerned
with domain adaptation between synthetic and real images for transfer learn-
ing. For the purpose of making a segmentation network robust across multiple
domains, Chen et al. [6] propose to treat different cities as distinct domains and
go on to learn both class-wise and global domain adaptation in an unsupervised
manner. The concept of domains are treated as a means-to-the-end for boost-
ing segmentation accuracy which is a common approach. Similarly, Sakaridis
et al. [24] use the idea of guided curriculum model adaptation for improving se-
mantic segmentation of nighttime images for advanced driver assistance systems
(ADASs). Having captured the same scene at daytime, twilight and night using
labeled synthetic stylized and unlabeled real data, models are transferred from
daytime to night with twilight as an intermediate domain, using the Dark Zürich
dataset. In a similar vein are the works of Zhang et al. [36] and their follow-up
paper [35]. They learn global label distributions over images and local distribu-
tions over landmark superpixels and feed those into a segmentation network to
boost semantic segmentation performance.

2.2 Domains for Context Generalization

While these works provide a foundation for capturing context in a deep learning
(DL) manner, and also tackle the problem of domain generalization, it stands
to reason that the semantically segmented output masks are much lower-level
in their representation of the context than desirable. It could be argued that
pixel-wise classification as final model output is less representative of the actual
content of an image than our conceptual usage of domains around target objects,
at least for object-centric tasks. To this end the work of Sikirić et al. [27] is
related. The task is image-wide classification of images captured in various traffic
scenes in Croatia. Their treatment of different traffic scenes is similar to the idea
of domains in this work: As a concept to describe the environment for scene
parsing. Although the methods developed in our work are kept as general as
possible to allow the application in multiple domains, we will focus on one domain
in particular, the aerial domain. While methods for ADAS applications have
gotten strong interest, the aerial domain is much less studied in contemporary
literature.

2.3 Public Aerial Datasets

Publicly available datasets providing semantically segmented images are fairly
numerous, around 10-15 according to [14]. Nevertheless, no semantically-segmented
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dataset specifically created for airplanes exists. Three semantic public datasets
that feature some images of airplanes are accessible: A derivative of the ADE20K
dataset for scene parsing [37] referred to as ADE20K-SceneParsing. An extension
to the MS COCO [17] annotation for stuff classes [4] denoted as COCO-Stuff.
And the semantic extension to PASCAL-VOC [10], PASCAL-Context [19]. For
brevity these special derivations will be referred to as ADE, COCO and PAS-
CAL. These three datasets from the basis for our following context analysis.

3 Semantic Context and SemanticAircraft

In this section we outline our taxonomy of aerial domains, detail the data ag-
gregation process, introduce our algorithm to compute context vectors and use
context statistics and a context filter to merge images to SemanticAircraft, for
which we finally provide domain label annotations.

3.1 Aerial Domains and Aggregation of Airplane Images

Considering the environment airplanes traverse, three domains can be identified:

Apron: In aviation the area where airplanes are usually parked, loaded or
unloaded with goods, boarded or refueled is referred to as apron. A large variety
of partially occluded objects, persons and unusual vehicles such as mobile load-
ing ramps, taxiing vehicles and moving stairways, is common.

Runway: The strip of asphalt or concrete used primarily for takeoff and
landing of the airplanes is referred to as runway. It is usually enclosed by grass
or other types of soil, with more vegetation such as bushes and trees appearing
to the sides. Neither vehicles nor persons are usually encountered in this domain.

Sky: Sky is typically a smooth blue or grey background to the airplane, but
clouds and time of day can significantly alter its appearance. The elevation angle
of the capturing camera plays an important role.

Other: Finally we use a fourth domain, other, for out-of-context airplanes.

Images from ADE, COCO and PASCAL featuring at least one airplane pixel
in their semantic masks were aggregated and the following observations made:

ADE20K-SceneParsing: ADE features 146 images with airplanes in to-
tal, where 33 of the 150 classes are of interest. Images on average are around
600 × 600 in size. Two pairs of duplicate images exist where only one image is
kept.

COCO-Stuff: COCO is the largest of the three datasets with 3079 images
featuring airplanes. COCO-Stuff has 171 classes with 41 being relevant. Aver-
age image size is around 640×480. Besides out-of-context airplanes, COCO also
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Algorithm 1 Obtaining semantic context

Requisites: A set M of masks m mapping from pixels to the list of class ids x =
{0, . . . , N}, in particular t for the target class and label v for void pixels.

1: function GetContext(M,x)
2: for m ∈M do ▷ For every segmantic mask
3: mext ← dilate(m, t, 1, 5) ▷ Dilate the mask to deal with void pixels
4: for x in x do ▷ For every class in consideration
5: if x ̸= t, v then ▷ Ignore specific classes
6: cm,x ←

∑i=W,j=H
i=0,j=0 (mexti,j == x) ▷ Count class-specific pixels

7: ∀x ∈ x : c ← 100× cm,x∑
(cm)

▷ Normalize to obtain a (0, 1] squashed vector
8: return c

features synthetic images.

PASCAL-Context: The total number of images with airplanes is 597. It
has 456 classes in total of which around 30 are applicable. Here, many variations
for building and soil exist. The average image size is around 470× 386.

Every image featuring at least one airplane pixel is considered. If the dataset
provides bounding box (BBox) annotations they are used for extraction of in-
stances, otherwise an algorithm iteratively extends rectangles encompassing 1
pixel at the start to include all pixels of the same target class touching any
already included pixels.

3.2 Encoding Visual Semantic Context

The method used for obtaining semantic context is similar to the concept of label
occurrence frequency presented by Zhang et al. [36]. In this work we extend the
algorithm to handle semantic uncertainty boundaries, exclude undesired classes
and apply the method to a finer granularity of image regions. The semantic
context module described in algorithm 1 extracts label frequency for a set M
of masks m. Besides the masks, the list of classes x ∈ Ru×1 is required. As a
first step, to deal with void pixels at label transitions, the boundaries of the
target instance are expanded by five pixels in every direction, i.e. the instance
gets dilated by 1 for five times. Then for every class in x the number of pixels in
a certain patch of m is obtained and normalized with the total number of pixels
in that patch. For void and airplane pixels, they can optionally be ignored.
As a result, a number of context distribution vectors c are obtained in every
dataset d. Vector Cd,img,q=II then for example gives the context in dataset d
across the second image quadrants. Quadrant-I is the top-right image quadrant
counting counter-clockwise. Entries in c are also sorted by magnitude. We deal
with instances and image quadrants separately, since a downstream tracking
framework would benefit from this granularity. The module was applied to the
datasets ADE, COCO and PASCAL to obtain first statistical context measures.
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Algorithm 2 Semantic context filter

Requisites: Set C of vectors c holding statistics for every patch to be filtered. Labels
x that shall get filtered with quantile percentages p = (0.93, 0.93).

1: function FilterContext(C,x,p)
2: for (x, p) in (x,p) do ▷ For every filter label
3: qi,x ← quantile(C(i,x), p) ▷ Calculate quantiles in instances
4: qq=I...IV ,x ← quantile(C(q=I...IV ,x), p) ▷ And image quadrants
5: Si,x ← Ci,x < qi,x ▷ Filter instances using the threshold
6: for i← I to IV do
7: if i ≤ II then
8: Sq=i,x ← Ci,x < mean(q(q=I,x), q(q=II,x)) ▷ Or mean for quadrants
9: else
10: Sq=i,x ← Ci,x < mean(q(q=III,x), q(q=IV ,x))

11: return S \ (Sindoor ∪ Svoid) ▷ Let both constraints apply for the final set

3.3 Aggregation and Context of SemanticAircraft

When training a framework on public datasets a single pass of data aggregation
does not yield optimal data in terms of domain coverage, redundancy, object
size and especially class consistency. Therefore, following inspection of context
statistics, semantically similar classes were merged to superclasses for Semanti-
cAircraft. Bounding boxes were increased by thirty percent, which strikes a good
balance of incorporating distant elements while leaving out largely irrelevant fea-
tures. First context statistics have shown that many images and instances feature
undesirable context traits, e.g. a high-percentage of void and indoor pixels. Since
semantic context yields a high-level understanding of the scene, it can be used to
filter patches where the context in specific classes is higher than a desired value
(algorithm 2). To be precise, using the set C of context vectors for any patch, ob-
tain the quantile value qp at the threshold p and remove all patches with context
above qp, while using the mean for quadrants-I/II and III/IV. Our motivation
for using the mean of the upper vs. lower image is, that the majority of images
showing airplanes feature a clear horizon (top) or ground (bottom) separation,
if the airplane is on the ground. While visual content in the lower left quadrant
might be dissimilar to content of the lower right for a limited number of images,
assuming a dataset of infinite size, the content of the two quadrants becomes
equal. The same reasoning holds for the upper two quadrants. Therefore, to re-
duce dataset bias we take the mean of the upper and lower quadrants. Following
the heuristic of filtering patches showing at least a small amount of indoor pixels,
the percentages were determined empirically as p = (0.93, 0.93). This removes
indoor images while also removing samples with excessive void pixels. As a last
filtering step, low-level filters were applied: All instances with width or height
shorter than 60 pixels and aspect ratio larger than 6:1 were discarded. This leaves
3854 instances and 13265 image-quadrants. Although not visualized in this pa-
per, the filtered out-of-distribution patches include toy-airplanes, airplanes in
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Fig. 2: A random selection of instances (top) and quadrants (bottom) from Se-
manticAircraft. Clutterness in quadrants is lower than instances, across all do-
mains. Although looking like a sky image, the fourth image in the other row
of the upper half actually shows a computer generated image. Images with red
outline were misclassified by any of the three prediction models (see section 4).

magazines, LEGO-airplanes and many airplanes in museums and exhibitions.
Without the exclusion, these samples would bring unwanted noise into the data
for training domain prediction models. Figure 2 provides example images from
the resulting dataset SemanticAircraft. Final semantic context statistics were
obtained and can be seen in table 1.

4 Domain Prediction on SemanticAircraft

In this section we propose the application of semantic context for the task of
domain prediction. Three distinct approaches were chosen for this task:

Baseline: First, define domains as set of superclasses. Using the context vec-
tors Ci and Cq run a threshold algorithm with defined ranges and weights.

Unsupervised: Using the set of context features Ci and Cq, fit an unsuper-
vised machine learning (ML) model to predict the domain for unseen context
vectors, i.e. interpret label statistics per patch as features and use unsupervised
learning for clustering – reinterpret the clusters for a classification setting.
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Table 1: Visual percentage-wise context for the SemanticAircraft dataset show-
ing dominant sky-context. Context across all four quadrants was merged.

building elevation object pavement person plant sky soil vehicle waterbody

Instances 7.5 3.2 1.5 15.8 1.2 5.1 57.2 6.3 0.9 1.3
Quadrants 4.2 2.8 1.2 17.4 1.1 4.0 58.6 7.8 1.0 1.9

Supervised: Instances and quadrants from SemanticAircraft with their re-
spective domain labels are used for supervised classification with a CNN.

For the purpose of domain prediction, classification accuracy (recall) is the
primary goal, although unsupervised mixture models used other metrics for pa-
rameters tuning. The parameters of the baseline algorithm were not tuned, in-
stead were set once using human-expert knowledge. The dataset SemanticAir-
craft consistes of a set of 3854 instance and 13265 quadrant triplets: RGB input
images, corresponding context vector ci/q, and ground truth (GT) domain label.
After setting 20% of data aside for the test set, the experiment took place in
two phases. In the first phase hyperparameters and architectural designs were
tuned following the evaluation on the validation portion of the remaining 80%
using method-specific metrics. For the second phase two separate versions of
SemanticAircraft were used. The first consists of all remaining 20% of instances
and quadrants. For the second all samples with the GT domain label other were
removed. The final prediction results of phase 2 can be observed in table 2.

4.1 Baseline Threshold Model

Algorithm 3 proposed in this subsection serves as the baseline for domain pre-
diction evaluation. The basic premise of the baseline was to develop an algo-
rithm that works similar to human intuition: The relative pixel amount of every
context-class contributes towards a certain domain-belief with a set strength if
it is as-expected for any domain. For example, apron samples are commonly ex-
pected to feature vehicles while runway and sky are not. Observing the context
for any patch, e.g. cvehicle = 0.4 meaning forty percent of pixels are vehicle,
the ranges r of expected vehicle context for all three domains are checked and
weights w added for every domain with bounds including 0.4. This cummula-
tive score s signifies the level of distinction all context classes provides. This
is done for every superclass with scores adding up to the domain score d. For
classification, an image patch then has to reach a configurable score-threshold
th. While simple to configure, this algorithm shows multiple shortcomings: 1) It
is parameter-heavy, making tuning for a set of domains and extension to other
domains difficult, 2) All parameters are partly dependent on expert-knowledge,
informed by previous dataset-wide semantic context analysis, 3) Equal domain-
scores lead to ambiguity – in this case, this ambiguity was solved with random
tie-breaks 4) Patches not meeting the threshold signify high uncertainty in the
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Algorithm 3 Thresholding domain prediction

Requisites: Set of context vectors Ci/q. Set of domains d and for every domain and
superclass s consisting of classes c a certain range rx,y and weight wx,y. Domain-
prediction threshold of th and a decrease thd.

1: function TDP(Ci/q,D,S,R,W, th, thd)
2: for c in C do ▷ For every context vector
3: d s ← 0 : 0 ∈ Rn×1 ▷ Initialize the domain score
4: for d in D do ▷ And for every dataset
5: for s in S do ▷ And superclass in that dataset
6: s s ←

∑
i ci,∀c ∈ s ▷ Aggregate context of all classes

7: if s s ∈ [rd,s,l, rd,s,u] then ▷ Check if score is in range
8: d sd ← d sd +wd,s ▷ Add a weight to the domain score

9: if max(d s) > th then ▷ Take the top-1 domain
10: lc ← argmax(d s) ▷ And assign the domain label
11: else
12: th ← th− thd ▷ Or decrease threshold until domain is found

13: return l ▷ Return domain labels for every image patch

context or out-of-context patches and it is unclear how this should be resolved.
Despite these drawbacks, once set up for a set of domains and datasets, results
are reproducible due to the deterministic nature and inference time is negligible.

4.2 Unsupervised Clustering and Mixture Models

The mathematical foundations of the unsupervised clustering and mixture mod-
els are detailed by [3]. It should be noted, that any created cluster are an internal
mathematical construct and do not resemble the set of predefined domains. This
makes interpretation in a classification setting not as straightforward as with
CNNs. The scikit-learn python library [21] was used for implementation. The
clustering model of choice was the variational Bayesian Gaussian mixture model
(VBGMM), which provides a larger flexibility than popular K-Means or regular
Gaussian mixture models. The optimal hyperparameters are those, where the
silhouette-coefficient [15] is at a maximum in [0, 1]. Tuned parameters include
the distribution prior (Dirichlet process vs. Dirichlet distribution), covariance
type (full, diagonal etc.), initialization (K-Means, random) and number of ac-
tive components to model the data. Parameters were tuned in a grid-search, the
highest achieved coefficients are 0.702 and 0.766 for instances and quadrants re-
spectively, only one cluster can be assigned at any time. It should be noted, that
in some experiments, the number of clusters was not set, allowing the VBGMM
to cluster the context vectors however it sees fit. This would result in up to 13
and 9 clusters for instances and quadrants respectively, a hint that the restraint
to 3 or 4 clusters does not fully explain the distributions that created the context
vectors. Finally, it should be noted hat context vectors were not assigned to any
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of the 3 or 4 domains, but only to an equal number of clusters. This means the
method is truly unsupervised at the cost of domain prediction accuracy. To ob-
tain classification accuracy (recall), the best-performing permutation of possible
cluster-assignments had to be found, since the clusters are not directly related
to the defined set of domains. This was done by expressing the confusion matrix
across clusters as a cost matrix and obtaining the minimization over all permu-
tations of possible row/column combinations [18], 4! when including other, 3!
otherwise. This yields the permutation of the confusion matrix with the highest
diagonal sum.

4.3 Supervised Convolutional Neural Networks

For the CNN, not the set of context vectors are used as input data, but in-
stead the images IRGB / QRGB and corresponding class-labels Il / Ql obtained
from domain annotation. The PyTorch library [20] was used for implementa-
tion. All samples were resized to 256x256 pixels to meet the input requirements.
The tuned parameters included model-type and size (ResNet50 to ResNet34,
ResNet18 and various DRN [33] and MobileNet [25] architectures), image aug-
mentation strength, batch-size and the manual addition of a dropout layer. Pa-
rameters were tuned using 5-fold cross validation. The best performing models
on both instances and quadrants turned out to be ResNet18 [13] variants. For
both models, only light image-augmentation yielded the best results. A key dif-
ference between the models is the presence of dropout (p = 0.5) for the quadrants
model. Thus the problem of model overfitting could be addressed by reducing
model-size and adding a dropout layer to the architectures. With hyperparame-
ter tuning of the models concluded, they can now be directly compared against
another on the held-out test set.

4.4 Domain Prediction Results

Since this can be seen as a classification task, classification accuracy or recall
was used. Table 2 shows the final obtained results.

It should be made clear that all three models serve different purposes and
only quantifying their usefulness regarding inference accuracy does not give the
full picture: While the CNN has given the best prediction performance, the re-
quirement of annotations for the domains are a significant drawback, limiting its
application in entirely new domains. Nevertheless, for an applied system that ob-
serves airplanes around airports the CNN model would be the preferred choice.
For the baseline, the parameterization makes tuning and extension to other do-
mains difficult. At the same time, since context statistics need to be analyzed for
choices in data aggregation anyway (at least when dealing with a new dataset
from the wild), the parameterization naturally evolves from these ideas and re-
quires little more effort. While the variational Bayesian gaussian mixture model
(VBGMM) performs the worst in terms of prediction accuracy, the insights the
model can provide into the dataset structure, hinting at possible other subdo-
mains besides apron, runway, sky and other, are noteworthy. If the number of
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Table 2: Accuracy of all three models predicting domains of airplane instances
and quadrants from SemanticAircraft.

Instances Quadrants

Including Other Excluding Other Including Other Excluding Other

Baseline 0.588± 0.015 0.796± 0.011 0.639± 0.017 0.799± 0.006
VBGMM 0.586± 0.048 0.712± 0.06 0.539± 0.029 0.637± 0.083
ResNet18 0.716± 0.015 0.854± 0.011 0.692± 0.013 0.778± 0.006

clusters was not specified as it was the case in some VBGMM experiments, more
than three or four clusters were created. The results indicate, that the limitation
to apron, runway and sky was perhaps too strict. In future work, further analysis
with clustering algorithms could provide important insights.

Thus, all three models have benefits and drawbacks but for the explicit task
of domain prediction, the supervised CNN performed the best. The exclusion
of any other samples does improve all model’s performance, most significantly
the baseline. The importance of filtering out-of-context samples is not appar-
ent but it stands to reason that without the explicit context representation and
filtering using context the CNN would perform worse. Finally the somewhat un-
derwhelming accuracies can be broadly explained due the manual annotation of
domain labels. Even for human experts the distinction between apron and run-
way was hard, especially for image quadrants, and the most common prediction
errors was between these two domains. A more principled approach, perhaps us-
ing context statistics themselves to assign labels to image patches, could prove
more fruitful.

5 Conclusion

With the proposed semantic context module context vectors were extracted from
semantically segmented masks. These context vectors were used for improved
data aggregation and domain prediction of images in the merged dataset Se-
manticAircraft. Images were further manually annotated with domain labels.
Results show that all three domain prediction models, a novel baseline, unsu-
pervised clustering model, and the CNN were capable of predicting domains
with acceptable accuracy, although only inferences with the ResNet18 CNN are
accurate enough to guide potential downstream models. For baseline and mix-
ture models the fact that they do not require annotations is a significant benefit.
The clustering method additionally provides data introspection. In future works,
improved domain prediction results could be used to guide parameter-selection
for downstream models fine-tuned on specific domains. Finally clusters created
with the unsupervised models could be further analyzed for deeper insights into
the visual context of the datasets.
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