
MASTER THESIS
Thesis submitted in partial fulfillment of the requirements for
the degree of Master of Science in Engineering at the Univer-
sity of Applied Sciences Technikum Wien - Degree Program
Mechatronics/Robotics

Visual Semantic Context Encoding for
Data Harvesting and Domain Prediction

By: Andreas Kriegler, BSc

Student Number: 1810331016

Supervisors: Daniel Steininger, MSc (AIT);
Wilfried Wöber, MSc
Dr.rer.nat. Andrea Ojdanic

Vienna, September 15, 2020

Declaration

“As author and creator of this work to hand, I confirm with my signature knowledge of the
relevant copyright regulations governed by higher education acts (see Urheberrechtsgesetz
/Austrian copyright law as amended as well as the Statute on Studies Act Provisions / Exami-
nation Regulations of the UAS Technikum Wien as amended).

I hereby declare that I completed the present work independently and that any ideas, whether
written by others or by myself, have been fully sourced and referenced. I am aware of any con-
sequences I may face on the part of the degree program director if there should be evidence of
missing autonomy and independence or evidence of any intent to fraudulently achieve a pass
mark for this work (see Statute on Studies Act Provisions / Examination Regulations of the
UAS Technikum Wien as amended).

I further declare that up to this date I have not published the work to hand nor have I presented
it to another examination board in the same or similar form. I affirm that the version submitted
matches the version in the upload tool.“

Vienna, September 15, 2020 Signature

Kurzfassung

Visueller semantischer Kontext beschreibt die Zusammenhänge zwischen Objekten und deren
Umgebung in Bildern. Eine Analyse dieses Kontexts kann Informationen liefern, mit Hilfe
derer ein holistisches Verständnis von Bildszenen ermöglicht wird. Betrachtet man den Kon-
text über mehrere Bilder hinweg werden Domänen erkenntlich. Domänen bestimmen die
vorwiegenden Umgebungen von Objekten und sind definiert durch charakteristische visuelle
Merkmale. Menschen fällt es leicht diese semantischen Beziehungen zu verwenden um die
Umgebungswahrnehmung zu fördern – im Bereich des maschinellen Sehens existieren jedoch
noch wenige Arbeiten die dieses Kontextwissen umfassend verwenden.

Während Kontext oft implizit in künstlichen neuronalen Netzwerken gelernt wird, zeigt diese
Arbeit eine Möglichkeit, Kontext explizit auszudrücken und diese statistische Darstellung in
zweierlei Hinsicht zu verwenden. Die Verwendung des Kontexts ermöglicht es, in der Ag-
gregierung eines Datensatzes irrelevante und ungewollte Bilder auszufiltern, ein wichtiger
Schritt um die Abdeckung der Domänen für nachfolgende Lernaufgaben zu verbessern,
was besonders notwendig ist, wenn mit öffentlich zugänglichen Datensätzen gearbeitet wird.
Darüber hinaus wird Kontext dazu verwendet, um die Domänen bestimmter Objekte zu erken-
nen, was wiederum eine weitergehende Adaption der Parametersätze von domän-spezifisch
trainierten Modellen ermöglichen könnte.

Das entwickelte Framework wird speziell im Bereich der Luftfahrt getestet, um Kontext von
Flugzeugen aus den Datensätzen ADE20K-SceneParsing, COCO-Stuff und PASCAL-Context
zu verarbeiten. Als Zwischenergebnis werden Statistiken auf diesen Datensätzen gezeigt,
welche wiederum die Formulierung des abgeleiteten, vereinten Datensatzes "SemanticAir-
craft" ermöglichen. Drei unterschiedliche Methoden werden zur Klassifizierung der Domänen
verwendet: Ein Algorithmus, der mit Schwellwerten arbeitet, sowie unüberwachte Clusteral-
gorithmen wie Bayesische Gaussische Mixtur-Modelle verwenden die explizite Repräsentation
des Kontexts, während faltende neuronale Netzwerke mit den Bildern per-se sowie Domä-
nannotierungen arbeiten. Allen Modellen gelingt die Klassifizierung der Domänen mit hoher
Genauigkeit, wobei das neuronale Netzwerk mit Genauigkeiten von 69% bis 85%, abhängig von
der Variante von SemanticAircraft, am performantesten ist. Die Ergebnisse entsprechen somit
den Erwartungen – die mit den Mixtur-Modellen gefundenen Clusterstrukturen stimmen nicht
zwangsmässig mit den definierten Domänen überein, aber ermöglichen eine allgemeinere
Analyse der Kontextstatistiken.

Schlagworte: Semantischer Kontext, Datenaggregierung, Domänenklassifizierung, Luft-
fahrtbilder

Abstract

Visual semantic context describes the relationship between objects and their environment in
images. Analyzing this context yields important cues for more holistic scene understanding.
Domains are an extension of semantic context across multiple images, specified by visual
features and form the environment objects most commonly appear in. Humans naturally use
these semantic relations to improve their environment perception but in computer vision litera-
ture only a handful of works exist that exploit context to significant extent.

While context is often learned implicitly in neural networks, this work provides an explicit
representation of context and utilizes context statistics in two ways. Using semantic context,
irrelevant images can be filtered during data aggregation, a key step to improving domain
coverage for a specific learning task, especially working with public datasets. Secondly, context
is used to predict the domains of objects of interest, which could enable later model adaptation
of fine-tuned models.

The framework is applied to the aerial domain, specifically the context around airplanes from
ADE20K-SceneParsing, COCO-Stuff and PASCAL-Context. As intermediate results, the con-
text statistics were obtained on these datasets to guide design and label-mapping choices for
a merged dataset, referred to as SemanticAircraft in this work. Three different methods were
employed to predict domains of airplanes: an original threshold-algorithm and unsupervised
clustering via variational Bayesian mixture models use explicit context priors, a supervised
CNN on the other hand works on input images with annotated domain-labels. All three models
were able to achieve satisfactory prediction results, with the CNN obtaining highest accura-
cies of 69% to 85% depending on the subset of SemanticAircraft. The results therefore meet
expectations – clusters found with the mixture models do not necessarily correspond to the
predefined domains and instead allow a more general analysis of the context statistics.

Keywords: semantic context, data harvesting, domain prediction, aerial data

Acknowledgements

I would like to thank both of my thesis supervisors Daniel Steininger and Wilfried Wöber for
their guidance during the writing of this thesis. The shared knowledge, critical comments and
discussions were a significant component necessary to complete this thesis.
I would like to thank the Austrian Institute of Technology for supporting this project and the UAS
Technikum Vienna for approving it.
Lastly I am grateful to my extended family for their everlasting support, compassion and kind
words. The last few years have been the most exciting in my life by far, and with this thesis
another major chapter comes to a close.

Contents

1 Introduction 1

2 Related Works 5
2.1 Semantic Context and Natural Language Processing 5
2.2 Semantic Context in Co-occurrence Models . 7
2.3 Semantic Context and Segmentation with Deep Learning 8
2.4 Domain Adaptation and Prediction for Context Generalization 10

3 Aerial Domains and Public Aircraft Data 14
3.1 Aircraft and Common Aerial Domains . 14
3.2 Image Attributes for Aerial Scenes and Autonomous Driving Applications 16
3.3 Public Datasets and Shortcomings of Public Data 20
3.4 Preliminary Aggregation of Airplane Images . 28

4 Semantic Context Extraction and Exploitation for Data Distillation 31
4.1 Obtaining Semantic Context and Label-Neighborhood Measures 31
4.2 Context Statistics for Airplanes from ADE, COCO and PASCAL 34
4.3 Data Distillation for Aggregation of SemanticAircraft 39
4.4 Context Statistics on SemanticAircraft . 44

5 Domain Prediction on SemanticAircraft 50
5.1 Domain Prediction as Computer Vision Task . 50
5.2 Domain Annotation for SemanticAircraft . 52
5.3 Baseline Threshold Model . 55

5.3.1 Hierarchical Threshold as Domain Prediction Baseline 55
5.3.2 Parameter Tuning of the Baseline Model 56
5.3.3 Evaluation of the Baseline . 58

5.4 Unsupervised Clustering and Mixture Models . 61
5.4.1 Unsupervised Clustering Algorithms and Mixture Models 61
5.4.2 Model Search of Unsupervised Models 64
5.4.3 Evaluating the Mixture Model for Domain Prediction 68

5.5 Supervised Convolutional Neural Networks . 70
5.5.1 Convolutional Neural Networks for Classification 70
5.5.2 Searching and Tuning Applicable Neural Networks 71
5.5.3 Evaluation of the ResNet18 Model . 73

6 Results and Discussion of Domain Prediction Models 78

7 Summary and Outlook 82

Bibliography 84

List of Figures 95

List of Tables 97

List of Algorithms 101

List of Abbreviations and Acronyms 102

Appendices 104

1 Introduction

Humans intuitively incorporate contextual information when trying to understand the environ-
ment they perceive. Objects appearing in an unfamiliar semantic context, or out-of-context
objects [1] such as airplanes on a highway, attract the observer’s attention since they are typ-
ically related to other domains. Incorporating this kind of prior information has the potential
to improve computer vision (CV) models by assigning meaning to objects and is essential
for solving upcoming challenges in scene understanding. In particular, autonomous systems
operating in the real world struggle to stay robust when traversing multiple domains, or the do-
mains look significantly different due to weather, atmospheric effects, or time of day. It stands
to reason that such influencing factors can define a new domain itself if the factors dominate
the visual features. In the context of this work a domain is a very flexible and all-encompassing
concept used to describe characteristics about visual scenes in a high-level manner.

Semantics of images or semantic parsing in the field of CV refers to the recognition and
understanding of the relationship between objects of interest other objects and their environ-
ment, oftentimes related by a common task. Natural occurrences of objects and corresponding
environments are analyzed to transfer this information into a logical-form representation, under-
standable for machines and artificial intelligence (AI). On a micro level pixel-wise classification
of images – semantic segmentation – yields information regarding both foreground objects,
commonly referred to as things [2] and background scenery, known as stuff [3] and enables
recognition and understanding of the image’s content [4]. Following this segmentation and
applying ideas from natural language processing (NLP), where understanding the semantics
of a word or sentence is a well-researched problem, semantic relations between things and
stuff can be formulated. These relationships answer questions such as "What does seeing
this object in this environment mean?". In CV, an example image might get translated with the
sentence "Two men riding a bicycle in front of a building on a road". Knowledge about the char-
acteristic features of male humans, bicycles, buildings and roads as well as spatial awareness
about the scene geometry are necessary to make such statements. Going one step further
and looking at the bigger picture yet, other descriptions that provide more detail can be "The
time of day is afternoon, the surroundings seem to be the neighborhood suburbs of a city in the
northern hemisphere, the season appears to be early-summer". Such broad observations are
easily surmised by humans and necessary for complete scene understanding but nevertheless
largely unexplored in today’s CV research.

The close surroundings of objects of interest feature distinctive semantic context and can
give such objects different meanings. An airplane on top of a bed is assumed to be a toy-
plane or maybe an illustration in a brochure while an aircraft surrounded by clear sky and
clouds is both "real" and in its natural environment or domain – undertaking the flying task.
At the smallest level, context can be the surrounding pixel-classes of objects of interest, e.g.

1

within the bounding-box, but context can also be given across an entire image or even dataset.
Incorporating a sense of direction or location of the context results in spatial context. In past
works, during inference with conditional random field (CRF) models, contextual information
was usually used as shared prior for classification: a boat has a higher probability of appearing
above or on the sea than a house, but at the same time the sea has a higher probability of
appearing underneath a boat than a house.

In the scope of this work, a domain is a collection of dominant or characteristic classes or
higher-level superclasses. The syntactic evolution from semantic context to domains is natural,
when considering the focus for the latter lies on some kind of object, person or autonomous
agent around which the context is formulated. As such it is closely related to the idea of se-
mantic context. In fact domains can be understood as a result of the analysis of an objects
semantic context, placing things into a distinctive domain. The idea of domains is especially of
interest when discussing intelligent agents in the real world, be it self-driving cars for advanced
driver assistance systems (ADAS) applications or aircraft, drones and unmanned aerial ve-
hicles (UAV) in the aerial domain. An agent during its operation works in a known set of
domains. This set can be defined by human experts and is thus exhaustive to describe the
expected working environment. These domains often-times contain multiple subdomains and
the granularity is an important distinction to make. A new subdomain could be defined if tasks
undertaken within are of great importance or the visual semantic context is distinctive enough.

Two example domains are indoor vs. outdoor. Both domains are comprised of distinct
features that are very natural for humans to understand. Indoor environments are generally
enclosed by walls and a ceiling, feature artificial flooring & lighting as well as a strong human
presence. Because of these characteristics, aircraft for example are unlikely to be encountered
indoor, at least during regular operation. If aircraft do appear indoor this already gives a strong
clue of the task taking place – there might be an exhibition of sorts or the aircraft is undergoing
maintenance. This simple example shows the potential understanding gained when domain-
awareness is included in image processing algorithms.

The term domain is sometimes used in CV to differentiate between real and synthetic data –
data captured in the real world vs. data generated synthetically. Latent representations usually
differ (real-world lighting conditions and atmospheric effects are difficult to model) giving rise to
the task of domain adaptation which seeks to minimize differences between the data distribu-
tions. In an ideal scenario divergence would become zero and the domains would merge into
one. In this work domains cannot merge to such an extend, and at least a few distinct domains
always remain, even on a very coarse level. Furthermore, domains are also always used in
reference to objects of interest and describe the environment these things appear in.

It is well known that cues referring to any kind of semantic relationship stem from the se-
mantic context surrounding objects and this context is therefore a necessity for more complete
scene understanding [5]. Although initial works leveraging context cues exist [6, 7, 8], there
is still significant unexplored potential in the full application of these context priors. Wang
et al. [9] describe domains, the natural extension of context, with a distinct feature space X
and marginal probability distribution P (X), where X = {x1, . . . ,xn} ∈ X are observed data

2

samples in that domain, such as domain-specific images.1 Following the analysis of P (X),
characteristic statistics can give an understanding of datasets which can in turn be used to
guide e.g. data-aggregation strategies for various learning tasks as a first step. Further along
the learning pipeline, due to the convolutional kernel in convolutional neural networks (CNN),
contextual information is usually learned implicitly regardless of the actual learning task at hand
[10, 11]. The semantic-context information is embedded as features in the feature space of the
layers and the specific characteristics of these kernel-parameters lead to the prevalent bias/-
variance dilemma [12]. Algorithms tuned to perform well in one domain, regardless of learning
task, are biased in a sense, and this bias is in conflict with an algorithm learned to perform
across multiple domains, featuring higher variance in its learned feature representations. An
explicit representation of context in the form of distinct domains might allow intelligent systems
to swap between models trained and fine-tuned on specific domains instead of relying on a
generalized model. This in turn improves model accuracy on numerous perceptions tasks.
This application for parameter-swapping is not part of this thesis, but the preliminary step of
predicting domains is studied in detail. The complete procedure could be understood as a
novel form of domain adaptation, since common domain adaptation methods usually deal with
the discrepancy between real vs. synthetic data.

Keeping the usefulness of semantic context for a variety of problems in CV in mind, this work
makes the following contributions: It brings forth both a simple way of extracting semantic con-
text using semantically segmented images, and secondly shows applications of this context
in different stages of a learning pipeline. In particular, extraction builds on the idea of label
co-occurrences, argues why co-occurrence is not enough, and forms statistical measures for
per-class distributions of pixels. Furthermore, it gives label transitions in the Von-Neumann
neighborhood (VNN) to give a narrow-range sense of direction. Obtained measures are on an
instance, image and dataset level and are used as statistical priors to improve data harvest-
ing procedures in target domains. The application in a learning procedure includes first the
formal description of the domain prediction task in a general sense. Experiments in predicting
domains, specifically the common environments of commercial airplanes across three public
datasets, are conducted. A baseline for this prediction was developed and various models
from both unsupervised and supervised machine learning (ML), particularly clustering algo-
rithms and mixture-models for the former and deep CNNs trained from scratch using manually
obtained domain-labels for the latter, were employed and evaluated for domain prediction

The structure of this thesis is as follows: First, in chapter 2 a brief introduction of semantic
context and its history in NLP is given. The usage of visual semantic context is then de-
scribed pre- deep-learning and with CNNs respectively. The aerial domain and applicable
public datasets and their shortcomings are introduced and the data aggregation procedure de-
scribed in chapter 3. Afterwards chapter 4 shows the particular methods used for obtaining
semantic context and statistics on images featuring airplanes from three datasets (ADE20K-
SceneParsing, COCO-Stuff and PASCAL-Context) are presented. The acquired statistics are
used to derive the target dataset SemanticAircraft. A set of filters for well-tuned aggregation us-
ing context priors is formulated. In chapter 5 the task of domain prediction is formally described

1The mathematical notation used in this work is described in Appendix A.

3

and the manual annotation procedure labeling ground truth domains for the image patches is
explained. Since no other works regarding the task of domain prediction in aerial scenes exist,
an original baseline algorithm is formulated. The developed baseline model as well as applied
unsupervised ML models and various CNNs for the task of domain prediction are detailed and
results presented and discussed. Following a brief summary, chapter 7 provides an outlook
on the possible future work with visual semantic context, including other methods of obtaining
context as well as possible learning tasks that likely benefit from semantic contextual knowl-
edge.

4

2 Related Works

The aspirations to achieve a more complete scene understanding has gained traction over the
past few years with semantic segmentation becoming an increasingly more popular learning
task for deep learning (DL) models. Following image-wide classification, object detection and
semantic segmentation, a clear trend towards more complex representations and a fuller un-
derstanding of visual imagery is noticeable [13, 14, 15]. Very recently the task of panoptic
vision [16], the combination of semantic and instance segmentation, has emerged.

This chapter provides an overview of existing works dealing with visual semantic context. In
particular, it shows existing methods for obtaining an explicit representation of the context in
images in some feature space X and the way semantic context priors, both explicit and implicit,
are used. In particular, knowing X and the marginal P (X) what methods exist for obtaining
the domain D, defined by Wang et al. [9] as D = {X,P (X)}.

We begin by looking at the early usages of visual semantic context and the way in which
ideas were derived from the field of NLP. This is done to gain a deeper understanding of
semantic context while working in a well-established field of ML. One can model both individual
letters as well as pixels with random variables l and p respectively and see that the same idea
of using neighboring letters, i.e. words, sentences and paragraphs, to establish the context
around l is the same as using the neighboring pixels of p.

2.1 Semantic Context and Natural Language Processing

The idea of obtaining and using information surrounding objects of interest in the visual do-
main stems from the same premise to leverage cues from the context of words in a language-
processing setting. NLP is a well established learning task with numerous ML and recently DL
models developed over the years to process and analyze large amounts of natural language
data, predominately written text but also spoken language.

Natural languages are languages that have evolved over time through the usage by humans
without a conscious effort to plan words, syllables and sounds by some logic. Nevertheless,
Montague has shown in his treatment [17] and subsequent works [18, 19] that any natural lan-
guage can be treated like a formal language. A similar argument can be made about physical
objects and the perception. The shape, size, color, structure and placement of objects in the
real world has also evolved naturally, although it stands to reason that humans are consciously
aware of these characteristics, more so than language syntax. Parameters of object appear-
ance are therefore partly premeditated and expressing perception data in a formal setting is
possible just the same. Both words and images are representations of 3D space, although
the first being one-dimensional and the latter two-dimensional. Due to his higher-dimensional

5

representation in images more information gets preserved but so do many of the common dis-
ruptive factors that make semantic parsing of images increasingly difficult. A car looks very
different during the day, the night, during sun, rain or snow.

The basic idea of combining visual semantic context with the context of words in text doc-
uments is to take the representations of the visual images or image regions I and those of
written language L and embed both in some feature space with different dimensionality, de-
noted F . These embedding functions, f(P) : I → F and g(l) : L → F working on a matrix
of pixels P and vector of letters l can take different forms and this is where the works mainly
differ. Once both representations are present in F , various measures for vector closeness or
similarity are typically used.

An example for g(·) is given by Murphy et al. [20] who attempt to embed the most important
information in text documents, i.e. reduce dimensionality of the text, via non-negative sparse
embedding (NNSE), a derivation of singular value decomposition (SVD) but the embeddings
can be overcomplete which strengthens sparse decomposition. They formulate the optimiza-
tion problem of decomposing input matrix X into A and D respectively, subject to a sparse
constraint on the rows of A among st other constraints.

The DeViSE model from Frome et al. [21] combines language and visual embedding. They
teach a language model, in particular the skip-gram architecture [22] to represent 155.000 terms
from Wikipedia documents with a semantic vector each. At the same time, they remove the
softmax layer from their visual model pre-trained on ImageNet [23] for object recognition, and
replace it with a projection layer for the embedding space. Once in F , they argue that such
vector-nearest-neighbor evaluation is a ranking problem and formulate a combination of hinge
and dot-product loss. They assess that L2 loss only aims to bring image and word vectors
together but stays agnostic to incorrect word vectors closer to the target image.

As part of zero shot learning (ZSL) for image classification, Norouzi et al. [24]’s ConSE
model does not learn a direct regression function f(·) but instead they train a classifier to
predict image labels in a maximum a posteriori (MAP) fashion. The semantic embedding
vector is then deterministically predicted by combining the semantic word embeddings from
skip-gram weighted with the classifier output probabilities. Cosine similarity is used in F to
compare the embeddings of images and class labels.

Kiros et al. [25] and their follow-up work [26] show end-to-end DL frameworks for caption
generation and multi-label classification of images respectively. In both cases a CNN is used
as f(·) for feature embedding in a multimodal space. In [25] a long short-term memory (LSTM)
model, a networks capable of capturing a larger context extent due to gated memory units,
also encodes the image description to the same space. A neural language decoder then
recursively generates captions. In [26] and [27] embeddings of features from extracted regions
of interest (RoI) are combined in a loss layer with embedded text features. Ren et al. [27]’s
work utilizes the GloVe model [28] for text labels.

Liu et al. [29] use a similar approach of deep visual-semantic embedding for selecting thumb-
nails of videos following word queries. They use the GloVe model for word embedding and also
replace the softmax layer with a projection layer mapping to the embedding space. Pan et al.
[30] jointly model visual-semantic embedding and translation to words with a LSTM-recurrent

6

neural network (RNN) jointly learnig video and sentence embedding. Cao et al. [31] combine
a visual-semantic fusion network (using LSTMs) with a modality hashing network to retrieve
images given image or sentence queries. Niu et al. [32] provide dense visual-semantic em-
beddings for specific image-region features and phrases instead of entire images or sentences.
Pérez-Arnal et al. [33]’s work put forward a concept of visually assessing the distance between
semantic concepts or words in the vast lexical database known as WordNet.

The main thing to take away from this overview is the similarity of semantic context in ei-
ther visual images or written language. Multiple methods exist for obtaining such a context
embedding using ML as well as DL methods. Nevertheless, attention has shifted away from
taking larger-dimensional features and projecting them to lower-dimensional joint embedding
space and instead lies in determining the semantics on a micro-level namely the classification
of individual image pixels in the learning task semantic segmentation.

2.2 Semantic Context in Co-occurrence Models

Before CNNs, semantic segmentation was done with either CRFs or large-scale tree models
similar to Markov networks [34, 35]. CRFs are a type of statistical discriminative model building
on the idea of Markov random fields (MRF). A MRF is an undirected graph G = (V,E) where
the vertices V are random variables (often superpixels in CV) and edges E are the depen-
dencies between the vertices/superpixels. When adding additional vertices, one might divide
the set of random variables into two sets x and y respectively. For a CRF the graph needs to
fulfill the Markov property, in the sense that conditioning on x globally means all variables in
y follow p(yu | x,yv) = p(yu | x,yx) where u 6= v and yu and yx are in the Markov blanket
(neighboring nodes in the graph): Using x as observed variables or evidence, the value for
any single label yi is only dependent on its neighboring nodes. This can be formulated in a
likelihood expression using parameters θ for label transitions and finding optimized θ to yield
the highest likelihood for p(y | x) with log-odds. In practice, CRFs are often used to incorpo-
rate object co-occurrence statistics. Superpixels or coherent image regions become a node in
a CRF and inference allows detection of harder object that co-occur with easily detected ob-
jects. Most works focus on pairwise co-occurrence due to computational complexity, although
many relationships might require richer representations [1]. Furthermore, the distribution on
co-occurrence statistics is often too flat in practice and not peaky enough to make decisive
arguments for or against the appearance of objects [36].

One early work is Choi et al. [1]’s model and their task of out-of-context estimation. They
argue that contextual information is useful for more than simply boosting object recognition
frameworks, and formulate the task of out-of-context estimation. A tree model is used to cap-
ture the co-occurrence of 107 SUN [37] categories, featuring binary variables to represent
whether a category is present in the image and latent variables representing scenes, meta-
objects or superclasses, using the gist-descriptor [38] as measurements for latent variables.
They then continue to construct a support tree (road supporting e.g. cars) relating bound-
ing box location and classes and were able to detect out-of-context objects due to unlikely
co-occurrence or uncharacteristic support relationships.

7

In a similar vein, Fu et al. [39] postulate a class label graph computed via an absorbing
Markov-chain process (AMP), similar to CRFs except nodes can reach an absorbed state
in which their state can no longer change, to model an entire semantic manifold in embed-
ding space, which goes beyond simple cosine distance similarity between embedded vectors.
Classes are grouped into superclasses that span distinct semantic manifolds. They argue that
the two most common spaces for semantic embedding are either the attribute space with an
attribute ontology used to represent class labels or the semantic word vector space. Their
graph is formed using clustering methods, in particular K-nearest neighbors [40].

Mottaghi et al. [4] introduced the PASCAL-Context dataset, providing label images (se-
mantically segmented masks) with 540 categories for PASCAL-VOC 2010 [41] and go on to
develop a new contextual model exploiting global context (presence or absence of a class in
the scene) and local context (contextual classes in object vicinity). They establish object roots
and formulate random variables for appearance parts (object semantics) and contextual parts
(surroundings outside root). The detection problem is viewed as MRF inference, with support
vector machines (SVM) learned via loss on intersection over union (IoU). SuperParsing [42]
and O2P [43] are used for segmentation, and they finally combine the different models into a
single contextual-detection model.

The idea of co-occurrence will be revisited at later points in the work but we will now look at
the possibilities that have arisen from using CNNs as very powerful feature extractors capturing
context naturally with the 2D convolution kernels.

2.3 Semantic Context and Segmentation with Deep
Learning

For a brief introduction into DL and its common terms and ideas, the reader is referred to [44].
The convolution operation f∗g combined with learnable weights in the kernel and the practice of
stacking multiple such layers on top of another has allowed CNNs to become versatile feature
extractors with wide-ranging applications in CV.

A simple application for semantic context is Doersch et al. [45]’s work of extracting an image
patch and another patch in the Moore neighborhood of the first and predicting the spatial
location of the second patch in the neighborhood. This is somewhat related to the generative
task of image inpainting and was used by Pathak et al. [46], who postulate context encoders as
CNNs that predict missing parts of a scene from the parts surroundings, encoding surrounding
context and decoding onto missing spaces.

In a similar vein to previous works using CRFs is Wang et al. [6]’s multiple-label classification
on NUS-WIDE [47], COCO [2] and VOC-2007 [48]. They combine a VGG [49] CNN pretrained
on ImageNet to embed features with a LSTM-RNN to embed label information in a joint space.
Similar to Choi et al. [1], they argue that CRFs only capture pairwise label co-occurrences, and
even though the graph is extendable it quickly becomes computationally intractable – while
recurrent neurons can represent higher-order correlations. The task of multi-label prediction is
represented as an ordered prediction path problem, and no Markov property is assumed, in-

8

stead (greedy) beam-search is used to find probable multi-labels. The labeling order is given by
occurrence frequency in the dataset. After predicting a label the RNN shifts its visual attention
away from regions with that label, to predict the next label on the ordered path. Unfortunately
this only partially deals with the semantic redundancy of separate labels, and having the label-
ing order decided by the occurrence frequency introduces bias, and it is unclear if this model
would perform as well with more uniform label frequencies.

Zhang et al. [8] pose the question whether capturing contextual information with a CNN is
the same as simply increasing the receptive field size. This is certainly a way to capture se-
mantic context, so perhaps the question should be "How much can one increase the receptive
field size and still capture relevant contextual information?". They contribute a context encod-
ing module to produce scaling factors conditioned on the encoded semantics. These scaling
factor are then use to highlight class-dependent feature maps, a strategy taken from style-
transfer and SE-Net [50]. The highlights get channel-wise multiplied with unencoded dense
convolutional featuremaps from the CNN. Dilated convolutional layers are used to create the
final semantic segmentation.

Chen et al. [7] use a pre-trained GloVe model to get semantic embedding vectors from
convolutional feature maps for every category, which are in turn fused with image features at
various locations to obtain attentional coefficients and category-related feature vectors. These
get related in a graph neural network akin to CRFs. The message propagation is gated to
encourage correlated categories (nodes) to talk. Finally, scores for every category are ob-
tained corresponding to the likelihood that category x appears in this image with high scoring
categories used as multi-labels for the image. Their ablation study shows that while semantic
decoupling is important, the co-occurrence graph is less so. The shortcomings are again un-
peaky pairwise co-occurrence can only every give p(x | y) and p(x | z) but never p(x | y, z)
or similar higher-order concepts like domains. Also since the normalization is only done over
location, categories with fewer instances are naturally correlated less to any other category.

In a similar vein with Zhang et al. [8]’s work, Fu et al. [51] state that the method with which to
effectively capture pixel or region-aware context in an end-to-end training framework is still an
open research question. They go on to say that this is a valuable research topic for achieving
comprehensive and accurate scene parsing of visual imagery. They use a weighting scheme
to include both global and local context to satisfy respective context demands of specific pixels
to help with semantic segmentation.

While these works provide a very solid foundation for capturing context in a DL manner,
it stands to reason that the semantically segmented output masks are much lower-level in
their representation of the context than one might desire. It could be argued that pixel-wise
classification as final model output is less representative of the actual content of an image than
multi-label classification or the concept of domains. We will therefore take a step back and look
at existing works on the concept of domains and how they relate to the definition in this work.

9

2.4 Domain Adaptation and Prediction for Context
Generalization

Following the definitions and notation of [52, 53, 9], described specifically in [54], a domain D
consists of a d-dimensional feature space X ⊂ Rd with marginal probability distribution P (X),
task T defined by label space Y and conditional probability distribution P (y | X) where X

and y are random variables or more specifically a sample set X = (x1, . . .xn) of X with cor-
responding labels y = (y1, . . . yn) from Y. Using feature-label pairs {xi, yi} the conditional
P (y | X) can in general be learned in a supervised manner with some discriminative objec-
tive function f(·). In literature, the problem most commonly deals with two domains, source
domain Ds and source task T s as well as target domain Dt and target task T T . If the do-
mains and tasks correspond, i.e. Ds = Dt and T s = T t, Ds becomes the training set and
Dt the test set. If the domains are somewhat related this corresponding information can be
used to learn P (yt | Xt), a process known as transfer learning (TL). As Wang et al. [9] ex-
plain, one-step adaptation can use discrepancy based (maximum mean discrepancy (MMD) or
Wasserstein distance in a reproducing kernel Hilbert space (RKHS)), specifically class, statis-
tic, architectural or geometric criterion. Another way to achieve domain adaptation (DA) is
to use adversarial based objectives to encourage domain confusion during reconstructions in
an encoder/decoder setup. Most commonly, the source domain consists of synthetic, labeled
images (see e.g. [55] for a physics-engine to generate synthetic images in avionics) while un-
labeled target images form the target domain. Multi-step DA has intermediate domains that
are more related with source or target domains respectively. These intermediate domains can
be hand-crafted, instance-based or representation-based. We will begin by taking a look at
common domain adaptation works building on this methodology and then formulate a general
extension to multiple domains that differs from the idea of intermediate domains.1

To begin with, it should be noted that the distinction between supervised and unsupervised
methods regarding DA is difficult to establish, many ideas being instead semi-supervised. Wil-
son et al. [57] argue in their survey of unsupervised deep DA that supervised methods often-
times build on the premise of data in Ds and Dt being drawn from the same distribution, an
assumption that does not hold in real life (specifically ADAS) applications very often. Pan et al.
[53] in their survey on TL define DA as a type of transductive TL where the task remains the
same, but domain marginal probability distributions differ. They point out that any kind of DA
working with feature representations assume said representations are domain invariant. An
early example of unsupervised DA building on the premise of minimizing discrepancy in distri-
butions is that of Ganin et al. [58]. The objective is to maximize the loss of a domain-classifier
that discriminates between source and target domains, bringing source (partially synthetic and
labeled) and target (real and unlabeled) images together, making the feature distributions over

1Recently the task of predictive domain adaptation (PDA) has emerged, where the aim is to generalize even
further, to new, previously unseen target domains. Mancini et al. [56] have proposed AdaGraph, a deep
architecture leveraging metadata to build a graph, where nodes represent domains and edge-strength models
domain similarity. Although promising, this holds less relevance for a problem where the domains are assumed
to be known and somewhat exhaustive in capturing the entire environment, as is the case in this work dealing
with aerial scenes.

10

the two domains similar. The formulation of their gradient-reversal layer functions very similar
to HδH-distance. As Ben-D. et al. [59] point out, HδH distance is often used as a discrepancy
metric between two distributions w.r.t. a hypothesis set H. This metric makes the assumption
that such a hypothesis both exists and enables well-behaved classification in both domains
(i.e. T s = T t). Furthermore, it only deals with binary classification (two domains) in the XOR
case, i.e. no image can come from both or neither domains. Building on the concept of confu-
sion, Tzeng et al. [60]’s work transfers category information between domains by maximizing
domain confusion and forwarding the class-correlations to the target domain.

Bolländer [61] provides a brief review of deep domain adaptation (DDA) techniques com-
mon in CV with a focus on applications in the ADAS domain. It shows a distinction similar to
the one of unsupervised DA between divergence-based, MMD or correlation alignment DDA,
adversarial-based methods using generative adversarial networks (GAN) and reconstruction-
based approaches employing deep reconstruction classification networks (DRCN) and cycle-
GANs.

For the purpose of making a segmentation network robust across multiple domains, Chen
et al. [62] propose to treat different cities as distinct domains and go on to learn both class-
wise and global domain adaptation adversarially in an unsupervised manner. The concept of
domains are treated as a means-to-the-end for boosting segmentation accuracy which is a
common approach. Similarly, Sakaridis et al. [63] use the idea of guided curriculum model
adaptation for improving semantic segmentation of nighttime ADAS images. Curriculum learn-
ing describes the process of first learning on easy examples and then gradually increasing
the difficulty during training for a specific task. Having captured the same scene at daytime,
twilight and night using labeled synthetic stylized and unlabeled real data, models are trans-
ferred from daytime to night with twilight as an intermediate domain, using the Dark Zürich
dataset. A cross-bilateral filter is used to smooth small camera pose errors at same locations
and a cycle-GAN is used for style transfer. The created stylized images contain human an-
notations of original counterparts but also unrealistic artifacts, whereas the real images have
less reliable pseudo-labels but are characterized by artifact-free textures. They then propose
invalid regions for highly uncertain pixels, while at the same time argue for the inclusion of
these invalid regions in evaluation. They finally include a sense of uncertainty by proposing the
uncertainty-aware intersection over union (UIoU) metric which is guaranteed to be larger than
IoU under the assumption that predictions on invalid regions are incorporated.

In a similar vein are the works of Zhang et al. [64] and their follow-up paper [65]. They
argue that the assumption of one discriminator (classifier) existing in both source and target
domains, does not hold, arguing that P (y | X) is likely not shared between two domains if the
classification boundary is sophisticated which it has to be for segmentation. They learn global
label distributions over images and local distributions over landmark superpixels and feed those
properties into a segmentation network to boost semantic segmentation performance. The for-
mer, global image-level label distribution informs the network how to update the predictions
while distributions over superpixels tell the network where to do so, thus guiding it towards the
target domain. The occupancy proportion of every category over entire images and superpixels
is calculated by counting pixel-class labels and dividing it by the size of the region (pt(c)). The

11

same calculation is done for network predictions (p̂t(c)) and the cross-entropy between pt(c)

and p̂t(c) is minimized. To obtain these proportions, for global label distribution, they extract
image features using an Inception-ResnetV2 network and combine those features with ground
truth label distribution from source images and finally feed this into a logistic regression and
nearest neighbors algorithm to forward per image label distribution to target images. For local
label distributions they segment each image into 100 superpixels via linear spectral clustering.
The dominant label and the features of these superpixels are used to train a multi-class SVM
yielding a label distribution. In their follow-up paper [65] they aim to search for more "easy"
tasks to learn, that can help guide the hard task (segmentation). They state that these tasks
should be "easier to solve" than pixel-wise labeling and can also be written as a function of the
pixel-wise labels. They recognize the weakness of using superpixels but state their necessity
as anchors to decide the location to penalize the segmentation network output. For exam-
ple, keeping only the top 60% most confident superpixels, as they do, biases towards "easier"
superpixels, while hard superpixels might contain unusual and by extension significantly rel-
evant context features. They shy away from using domain-wide superpixel label distributions
for network guidance noting possibly inaccurate estimates as troublesome. In their ablation
studies, they show that the inclusion of label distributions across images creates CNNs that
perform better on small objects. According to the confusion matrices, accuracy improvements
largely come from the fact, that the baseline tends to confuse road and sidewalk, while they
clear up this confusion with image-wide label distribution, which shows the strength of having
an image-wide context measure.

Finally of note is Sikirić et al. [66]’s work very strongly rooted in the ADAS domain. The task
is image-wide classification of images captured in various traffic scenes in Croatia. While they
do not apply any semantic context representation, their treatment of different traffic scenes is
similar to the idea of domains in this work: as a concept to describe the environment for scene
parsing. They differentiate between eight scenes encountered during driving in total: highway,
road, tunnel, exit, settlement, overpass, booth, traffic. They tackle this classification problem
using a SVM with a radial basis function (RBF) kernel, and it performs exceedingly well, most
likely due to the fact that training, validation and test sets are virtually indistinguishable. Se-
quences were captured driving around and every x-th frame is assigned to either the training,
validation or test set. This process, combined with the significant class imbalance, contributes
to the suspiciously high accuracies.

Extending the idea of source and target domains to the n-dimensional case, we assume to
have n domains Di = {X i, P (Xi)} with target T i = {Y i, P (yi | Xi)}. Thinking of domains in
this general way, one goal is to quantify and improve the coverage of subdomains in datasets
instead of transferring from one domain to another. If the data is reflecting the real world more
closely, any following learning algorithms are expected to perform better on tasks situated in
real world environments. As already hinted in the introduction, domains in this sense fea-
ture specific object lists based on semantic context analysis and characteristic distribution per
object category: per image, but also in image regions. The representation of the semantic
context then, among other factors, leads towards the selection of model type, be it supervised
or unsupervised, for domain prediction.

12

Starting at semantic context and NLP the path of visual context in CV was outlined in this
chapter beginning with non-deep models most notably CRFs that capture context dependen-
cies, followed by numerous DL works that deal with context most notably in terms of semantic
segmentation, until having arrived at works detailing DDA. While this overview has shown little
overlap between research tackling semantic context and domain adaptation, it is in the author’s
opinion that the latter is a natural extension to the former, especially when using the concept
of domains in its natural, applied form as different characteristics of scenes in the real word.
This is in line with the idea of traffic scene classification shown by Sikirić et al. [66]. We will
now move on to inspect one specific domain in particular, the aerial domain, outline the various
subdomains and highlight public datasets providing aerial scenes images for later evaluation
in the work. The aerial domain was chosen since it is underrepresented with research in CV
focusing largely on ADAS or indoor domains.

13

3 Aerial Domains and Public Aircraft Data

The methods developed in this work are kept as general as possible to allow the application
in multiple domains, nevertheless, evaluation is done in one particular domain: aerial scenes.
This chapter provides an introduction into the aerial domain, its most common subdomains,
outlines important dataset factors and image characteristics and showcases publicly available
aerial datasets. We begin by discussing aircraft and the domains they commonly appear in, in
the real world.

3.1 Aircraft and Common Aerial Domains

In public data the most commonly featured types of aircraft are commercial, jet-engine pro-
pelled airplanes used for passenger and goods-transport by different airlines across the world.
When considering the domains airplanes traverse, three distinct domains can be identified
quickly:

Apron
In aviation the area where airplanes are usually parked, loaded or unloaded with goods,
boarded by passengers or refueled is generally referred to as apron. It is best known
as the area passengers traverse on their way to the airplane. Images captured in this
domain are usually cluttered, showing a large variety of (occluded) objects – predomi-
nately persons and many types of unusual vehicles not seen in any other domain such
as mobile loading ramps, taxing vehicles and moving stairways.

Runway
The strip of asphalt or concrete used primarily for takeoff and landing of the airplanes is
referred to as runway. It is usually directly enclosed by grass or other types of soil, with
more vegetation such as bushes and trees appearing to the sides. Neither vehicles nor
persons are usually encountered in this domain.

Sky
Airplanes that are in-flight and have reached a certain altitude are in the domain sky.
More often than not sky is a smooth blue or grey background to the airplane, but clouds
and time of day can significantly alter its appearance. Furthermore, as was outlined
previously, context in CV stems from the surrounding pixels of object instances in the
2D image plane. Since this is a projection, elevation angle of the capturing camera has
a significant influence. Images of airplanes from above show field, forests and sea as
context, but for observers from the ground the actual context would be sky and clouds.
This is an issue that will be explored in more detail in section 3.3.

14

Table 1 compares common classes in the three major domains using typical avionics terms
on the left vs. classes as probable counterparts found in public datasets with oftentimes am-
biguous labeling on the right. This discrepancy can only be lowered by capturing more data,
but any representation of the real world can never be complete. Additionally, no normed, stan-
dardized or internationally adopted class-hierarchy for visual data exists but is instead defined
by well-known publications.

Table 1: Comparison of common things and stuff classes in the three main aerial domains between
ideal and public data, specifically the datasets ADE20K-SceneParsing, COCO-Stuff and
PASCAL-Context. Individual rows group classes in a semantic sense. Labels given in ital-
ics denote classes that do not occur in all three datasets. Empty cells on the left side are for
classes occurring in data that would not occur in this domain in the real world – empty cells on
the right signify things or stuff occurring in the domains in reality, but lacking a descriptive label
in the dataset.

Optimal data Public data

Apron Airplane (non-target) Airplane, Helicopter

Terminal, Jet-bridge Building, House

Staircase Stairs

Person Person

Luggage items Backpack, Suitcase

Taxi, Transport-bus, Truck Car, Bus, Truck

Concrete-floor Runway, Path, Road

Floor, Ground-other

Luggage-cart and Loading-conveyor —

Runway Runway, white ground-markings Runway, Path, Road

Floor, Ground-other

Tree, Bush, Grass Tree, Bush, Grass, Field

Runway-lights —

— Airplane, Building, House, Fence

Sky Sky, Clouds, Fog Sky, Sky-other, Clouds, Fog, Sun

Contrails —

— Sea, River, Lake

— Land, Mountain, Hill

— Forest, Road

15

The list of subdomains can never be complete and more domains could always be defined
– section 4.3 actually introduces three new domains. For now it suffices to say that a fourth
domain, other is also necessary to hold out-of-context airplanes.

To establish an understanding of and feel for the domains, Figure 1 gives example images
from Google-Images and aircraft-spotting videos. As such they are not an accurate represen-
tation of instances from public datasets, in fact the latter are often times more ambiguous and
difficult to assess. While the examples in Figure 1 give an ideal representation of the domains,
many images in public datasets are often influenced by a variety of factors which degrade the
image quality and lower the amount of extractable information. Some of those relevant factors
are outlined in the upcoming section.

3.2 Image Attributes for Aerial Scenes and Autonomous
Driving Applications

Visual data in the aerial and ADAS domain is influenced by a number of parameters which
make robustness of algorithms operating in the real world difficult. These imperfections are
prohibitive to the transition of ML models benchmarked on datasets to real-life applications
and this transition is perhaps the biggest challenge in CV yet. In the outlook of this work
(chapter 7) the possibility of capturing some of these parameters with the concept of domains
will be given, for now they are simply listed as factors to keep-in-mind1:

Lighting
Both time of day and weather affect lighting to a significant extent. Strong sunlight and
clear skies lead to distinct shadows and heavily contrasted images. In diffuse lighting
conditions (covered skies), shadows are indistinguishable or non-existent During civil or
nautical twilight, both at dusk or dawn, the sun is very low resulting in long cast shadows
and strong visual appearance difference between opposite sides of an object due to the
amount of light hitting the surface. Nighttime means very little natural but predominately
artificial lighting instead, which generally carries a blue tint and low color temperature.

Atmospheric effects
The most common kind of atmospheric effects are various types of precipitation, such as
rain, snow and fog. Rain is troublesome since it can cause reflections on the ground or
other surface, particularly if the skies clear shortly after the rainfall. Raindrops stuck to
windshields can also obstruct the field of view for the visual sensors recording images.
Fog is a very noticeable occurrence during the morning hours and airplanes during take-
off, landing or in-flight in the sky can be completely occluded as a consequence. Snow
significantly changes the appearance of any surface it covers, hiding the color and texture
completely. Another effect comes from air traveling from hotter to colder regions in the
surroundings. This stream is observable even to cameras and is not uncommon to occur

1Effects due to nature and their extent and frequency are of course dependent on even broader parameters, such
as geographic location and current season.

16

over the tarmac of the runway, especially during hot temperatures where the ground is
significantly heated up from oncoming sun rays and much warmer than the surrounding
air.

Problematic lighting conditions and atmospheric effects are very common when dealing with
images for ADAS applications, but are nonetheless rarely discussed in CV literature, although
a variety of weather conditions are dealt with in WildDash [75].

Another class of influencing factors stem from the setup of the capturing device or related
technical circumstances:

Camera-setup
The camera can be static, which is common on airports with cameras being mounted
on the tower or on installations in the field. The mechanics usually allow them to rotate
in one or more axis, but the overall setup is largely fixed in place. This is in contrast
to dynamic cameras which are mounted on the moving system itself such as cameras
on autonomous buses or other vehicles. They are less common in the aerial domain at
least referring to the detection of large-scale aircraft such as airplanes. Almost every
UAV, such as drones, on the other hand do feature some kind of camera setup, but the
cameras capture only the surroundings and not the aircraft itself.

Visual degradation
Describes all kinds of effects that occur during the capture of the images themselves or
the processing on the sensor chip. Over/underexposure can be due to incorrect shutter
speeds for the particular scene causing light to hit the sensor for too long/short a time and
can cause strong distortions in brightness and contrast. Allowing too much light to hit the
sensor can cause bloom2, leading to white circles. This can occur due to a particularly
strong light source, prolonged exposure or light reflecting and being focused on certain
surfaces. Noise is a common problem which corrupts the signal in complex ways, can
take many forms such as Gaussian or salt-and-pepper noise and can be attributed to
the physical properties of the electronic circuit which are influenced by the circuit board
temperature. Blur, most notably motion blur, occurs when object points move fast in
relation to the camera, specifically perpendicular to the optical axis. This fast moving
part of the scene is represented by a collection of pixels and skips many pixels from
image to image instead of being assigned to pixels close to the original. Other forms
of blur can be attributed to distortion from the lenses, such as radial distortion. Another
effect is chromatic aberration, which can be attributed to dispersion3. This means the
lens is not able to focus all color waves in the same point, causing a distortion in the color
scheme.

These effects all strongly influence the images and their content and referring to public data
for CV tasks, most public datasets in particular tend to suffer from some or multiple shortcom-
ings, due to the uncontrolled nature in which source images were taken.

2During bloom the charges in particular transistors overflow and neighboring transistors take up the charge.
3Dispersion refers to the phenomena, where light of different wavelengths take different paths after traversing a

lens since the refractive index of the lens material is dependent on the wavelength.

17

(a) Apron: Example images showing the domain apron on an airport. Wide-range captures similar to the four
images on the left are very rare in annotated and publicly available dataset, many photos look more like the four
on the right (Sources from t.l. to b.r.: modified and taken from [67, 68, 69, 70, 71, 72, 73, 74]).

(b) Runway: Example images showing the domain runway on an airport. Captures from this domain are usually
blurry due to the fast lateral movement of the airplane in relation to the camera. Images are often taken from
afar due to the general inaccessibility of the area for the public.

(c) Sky: Example images showing the domain sky. Captures of airplanes oftentimes show the aircraft in a pose
facing upwards and to the side. The context is lacking structural features and mostly consists of few grayish or
blue colors.

Figure 1: Example images not part of any public dataset showing the three most common domains of
airplanes during operation: apron, runway and sky. Example ground-truth domain labels
according to the labeling scheme outlined in section 5.2 are given in the upper-left corner of
the individual images.

18

Most public visual datasets additionally come with some kind of labeling annotation, since
supervised DL methods (CNNs and other types of neural networks) are used so commonly
for different learning tasks. The type of annotation is usually dependent on the CV task the
dataset was created for and one can follow a trend from coarse, image-wide classification to
detection to semantic segmentation when it comes to scene parsing tasks:

Classification
Classically done by assigning one label to an entire image as image-wide classification
[76, 77, 78, 79]. In recent times specific object instances or image regions get assigned
a class label instead. The basic premise with CNNs is to obtain a feature representation
of the images and derive single values for every class from said representations, followed
by maximum-likelihood classification.

Detection
Object detection [80, 81] usually means finding object instances from certain classes
in images. Common methods have a separate algorithm for yielding region proposals
where certain objects might be found. Within those proposals the objectness of the set
of pixels is judged. If objectness is high enough, classification of those pixels takes place.

Semantic segmentation
Taking classification to the micro-level, individual pixels can be assigned class-labels,
which is the task of semantic segmentation [82, 83, 84]. In practice, for the creation of
semantically segmented training data, annotation tools usually assign labels to superpix-
els instead of truly individual pixels when creating semantic masks.

Panoptic vision
Combining semantic segmentation with instance segmentation (detection and segmen-
tation of each object instance) has led to the task of panoptic segmentation [16], as a
richer and more complete scene understanding method.

While CNNs are certainly very capable of capturing context (see section 2.3), and are also
used in this work for supervised domain prediction (see section 5.5), semantic masks already
provide the basis for rich semantic information retrieval. When considering methods to use
context in an explicit representation and enabling domain prediction with this representation, it
is natural to use semantic masks as the basis to simply extract the visual context. This is the
premise for the data distillation and unsupervised prediction algorithms employed in this work,
using a context-vector c derived from masks directly.

Having established the various aerial domains of airplanes in images, the next section gives
an overview of public datasets that provide semantically annotated images featuring aircraft in
different domains. At the same time, further drawbacks of working with public data will also be
discussed in more detail.

19

3.3 Public Datasets and Shortcomings of Public Data

Publicly available datasets providing semantically segmented images are fairly numerous
(around 10-15 [85]) and a fair number are specific to ADAS (around 8: Apollo Scape [86],
Audi A2D2 [87], Berkeley DeepDrive [88], Cityscapes [89], India Driving Dataset [90], KITTI
[91], Mapillary [92] and WildDash [75]). While RailSem19 [93] provides the basis for scene un-
derstanding of trains and railway scenes, no semantically-segmented and annotated dataset
specifically created for aircraft and aerial scenes exists as of yet. The aerial datasets that do
exist usually feature images captured from aircraft such as drones flying over street scenes and
although a domain prediction of ground-scenes is definitely feasible it is not the focus of this
work. These restriction, in combination with other necessities and desirable feature of datasets
summarized below, significantly restrict the dataset selection.

Public
Since the process of capturing and semantically annotating an aerial dataset would be
beyond the scope of this work, publically available datasets need to suffice.

Sementically segmented
As mentioned already, semantic masks enable simple extraction of the context and rep-
resentations as pixel-based distributions with high accuracy [64]. Another method for
obtaining context is using the complex feature embeddings in CNNs either implicitly, as
is done in this work, or transforming it into an explicit representation first.

Aircraft instances
For this work, the focus is put on predicting the domain of aircraft, although application in
other domains only requires the exchange of source data (see chapter 7).

Common classes
When deriving from multiple datasets, the labels and data they represent are required to
be somewhat similar. Since no globally accepted class-ontology for CV exists and the
variety of objects in the real world is significant, this is a non-trivial requirement.

Scale
The scale of a dataset is of great importance two-fold. Both images should be sizable,
32 × 32 CIFAR [94] images are insufficient for context estimation, and the dataset itself
should be vast, featuring multiple thousand images. In both senses scale contributes to
increased variability of image content.

Additionally, domain labels for the training of the supervised CNN will have to be manually
annotated, since no labeling for this CV task exists yet. Since evaluation will take place on
an image-quadrant and instance basis, bounding box (BBox) annotations are also required to
allow the extraction of instances – although if BBoxes are not already present in the public
datasets, they can be generated from the segmentation masks (see section 3.4). Instance
segmentation annotations used in the panoptic learning task are not of relevance.

20

Three public datasets that feature aircraft and also pixel-wise annotation were identified and
used: A derivative of the ADE20K dataset [95] for scene parsing [96] referred to as ADE20K-
SceneParsing, an extension to the MS COCO [2] annotation for stuff classes [3] denoted as
COCO-Stuff and the semantic extension to PASCAL-VOC [41]: PASCAL-Context [97]. For
simplicity sake these special derivations will sometimes be referred to as ADE, COCO and
PASCAL in the scope of this work.

Another dataset which would fit the requirements is OpenImages [98] with 2.7 million seg-
mentation masks on 9 million pictures. Because OpenImages was created using Flickr image
search without tags, images of aircraft are varied to such a significant extent, which makes
roughly every third image irrelevant for most algorithms trained for specific real life applica-
tions. Aircraft can include LEGO toys, illustrations, missiles and many images captured from
the inside of an aircraft looking outwards, showing nothing more but the wing, although indoor
captures are also a problem with COCO. Filtering using the tag "airplanes" yields more specific
images removing some other airborne objects, such as a hot air balloon with the likeness of
Darth-Vader, which is not very likely to appear all that often in the real world. The sheer size
of the dataset (750GB + annotations) is also prohibitive to work with and it was consequently
decided to forego OpenImages.

Besides the number of images, there are other dataset statistics that allow insight at a
glance: The number of labels for example is a good indicator into the exhaustiveness of the
class hierarchy of a dataset. Too many labels usually lead to long-tailed datasets [99], while
too few labels hint at a possible oversimplification of the real world. Labeling consistency is a
related factor, describing whether the same things or stuff from the real world are labeled con-
sistently across the dataset and ideally across multiple datasets with the same label. This is
very hard to achieve and we will see that using more classes often times conflicts with labeling
consistency. The percentage of void or unlabeled pixels for segmented data reflects the qual-
ity of the human annotation procedure. A certain number of void pixels is unavoidable since
annotaters themself might not be able to recognize the content, which is not unusual. Further-
more, some void pixels always get created due to the annotation tool itself. Many datasets,
including ADE, COCO and PASCAL have void pixels when transitioning from one label to the
next in image space. Some datasets have borrowed the taxonomy of separating pixels into
things vs. stuff and provide a things-stuff ratio. Datasets usually feature more stuff pixels,
which might appear counterproductive in a learning scheme, because one generally wants to
learn the features that correlate to things instead. But when talking about holistic scene under-
standing, these stuff labels are very useful, providing strong priors especially for the estimation
of object domains. Various image metric such as minimum, maximum and mean image and
instance width and height are also often provided. A dataset purely for airplane instances for
examples is expected to have its images be wider than they are high, which can already give
a clue to the sort of data augmentation or network architecture required.

Some datasets, more often those for object detection, also provide Boolean flags, or integer
values for various characteristics of the instances. PASCAL-VOC is such a dataset and it has
flags signifying whether an object is either: 1) occluded, 2) truncated and/or 3) difficult. The
first two parameters are straight-forward and useful especially for tracking and detection tasks,

21

while the concept of image difficulty is an ongoing topic of discussion in CV. In general, image
difficulty is always related to the specific learning-task at hand. Tudor et al. [100] introduced
the concept of visual search difficulty using the response time of humans to queries phrased
"is object X in the next image?". As it turns out, for humans, this is mostly related to the
clutterness of an image but level of clutterness can be seen as just one metric for image-wide
difficulty. Lighting conditions and many of the previously mentioned variabilities influence the
difficulty as well but are harder to parse. On an instance level, perhaps the most important
metric of difficulty is the size. Oversized instances might be truncated while tiny instances
yield few features that help distinguishing. This is a prevalent problem when dealing with
aircraft since photographs are often taken from afar which makes them look small and bird-like
in appearance. In the aerial domains, particularly in sky, the canonical image would show
a white commercial plane in their "natural" flying-pose in the sky, with clear blue skies as
background. Airplanes of higher visual difficulty might also have unusual appearance such as
military aircraft, they might be captured in an unusual pose, or placed in rare environments
such as snow-covered runways, on the beach or on lakes. Hard examples would include any
of the above factors combined with tiny instance size, strong motion blur, occlusion or airplanes
that are exceptionally unusual in structural design, texture or livery.

Finally, camera parameters would also be a nice asset to have access to but are very hard
to obtain, particularly in the case of public datasets. Extrinsic parameters, such as setup type,
roll, pitch and yaw combined with intrinsic parameters e.g. focal length, field of view and frame
rate, would allow very early categorization of images on a global level.

Turning out attention back to the aircraft themselves, in the real world, many different types
of aircraft exist. When talking about manned aircraft a distinction can be made following the
type of propulsion: jet engines or propellers. Planes can also be distinguished regarding their
usage, e.g. for business, commercial, military, utility or leisure activities. For military-purpose
aircraft, not only transporter-type planes but also fighters exist, and in a stealth variant as
bombers. Another types of aircraft are helicopters, which exist in similar variety and follow the
same distinction by usage-type as aircraft. Another recently emerging type of aircraft are UAVs
which also come in various different styles. Military and leisure drones are very common, but
commercial usages are becoming more prevalent. In public data, the most common variant are
jet-propelled commercial airplanes by a large margin, and these are the kind of aircraft which
will be aggregated and inspected in this work.

A final point of discussion is the granularity of subdomains used. Looking at aircraft-spotting
videos and inspecting the datasets on-hand, at least two other aerial subdomains can be ob-
served:

Taxiway
The area airplanes traverse between apron and runway is commonly referred to as taxi-
way. It features many of the characteristics of runway, although the airplane is always
on the ground and not air-bound. It is further possible for multiple airplanes to appear
in one scene, which is highly unlikely for airplanes in runway. The paths and lines on
the ground are often curved – intersections of paths are not uncommon. Even though
the task is very different for airplanes (slow maneuvering instead of take-off/landing) the

22

visual similarities to runway are too high and it was decided to not use taxiway as a
distinct domain, with instances being assigned either apron or runway depending on the
proximity to either domain.

Take-off or landing (TOL)
Aircraft in TOL are air bound either approaching the airport or shortly after take-off, their
landing gear is extended. Using this definition a majority of captures from aircraft spotting
imagery found on YouTube or similar platforms would be classified as TOL. Since the only
difference to sky is an extracted landing gear (which is not even a certainty for all types of
aircraft) and the distinguishing factor between runway and TOL is at worst in a very strict
sense only a tiny margin of air between landing gear and tarmac, it was also decided to
forego this domain. TOL is instead substituted by runway and sky.

While taxiway and TOL are not included as domains, one other, artificial domain is included
instead: other. All aircraft that do not fall into any of the domains apron, runway or sky are
assigned other. This includes aircraft in indoor environments, images showing the indoor of
aircraft, airplanes used for public exhibitions, highly unusual types of aircraft such as military
types or toys and finally illustrations or other 2D depictions of aircraft. Another common oc-
currence are images of airplanes surrounded by a border-frame.Figure 2 shows a selection of
such out-of-context, other, airplanes from the datasets ADE, COCO, PASCAL. Examples of
unusual aircraft and airplanes from OpenImages can be seen in Figure 3. The proportion of
such images is particularly high in OpenImages, due to the liberal harvesting scheme. Figure 4

provides some example images for the two superseded domains taxiway and TOL as well as
images that can not be assigned to any of those domains, and are therefore other.

To deeper explore the topic of labeling consistency and labeling incompleteness, in combi-
nation with beforementioned specific aerial domains, a comparison of classes actually encoun-
tered in the real world vs. those appearing in ADE, COCO & VOC was undertaken. Table 1

provided this comparison for the three major domains apron, runway and sky – Table 2 now
gives the same overview for the borderline domains taxiway and TOL at the top and the artifi-
cial additional domain other at the bottom.

To summarize, the following limitations of the three datasets, for context work with airplanes
in particular, are noticeable:

Few datasets
Only few datasets showing aircraft featuring semantically segmented images exist to
begin with. Denoted "aerial" datasets usually feature images taken from aircraft such as
drones instead, looking downwards with a birds-eye-view.

Incomplete and inconsistent labeling
For example, the labels used to described the paths the airplanes travel going from apron
to runway are used interchangeably, making the tarmac in apron, taxiway and runway
semantically indistinguishable. Object part annotations are very rare, meaning the land-
ing gear is never annotated which could enable the inclusion of TOL as a distinct domain.
As Tables 1 and 2 show, many classes present in one dataset do not exist in the others.

23

(a) Examples showing images from ADE with the tag airfield. Leisure two-seat airplanes often appear in environ-
ments similar to the ones shown here.

(b) Examples of difficult or out-of-context airplanes from COCO. The second image from the left in the top row
barely shows the side of an aircraft in the background covered by groups of people. The two leftmost images
in the bottom row show particularly hard examples: the bottom left shows a tiny metal airplane as keychain –
in the right image, airplanes are barely distinguishable in the far background behind the fence. The airplanes
were outlined for better visibility.

(c) Example images of airplanes from the PASCAL dataset. The aircraft in the t.r. and b.l. corners are not only
highly unusual, the point-of-view also renders the images exceedingly similar and redundant.

Figure 2: This figure shows the limitations of existing datasets that include aerial scenes, by highlighting
images which are so unusual or devoid of significant information, making them prohibitive in a
learning scheme. This is one of the reasons exercising data distillation of public datasets can
have significant benefits for the learning pipeline, not only in the aerial domain.

24

(a) Examples of aircraft from OpenImages. While variability in images is desirable for generalization of models,
most of these images are so varied they carry little significant information for a learning procedure.

(b) Restricting the search from aircraft to airplanes yields better results, although various illustrations of airplanes
and largely truncated instances are still very common.

Figure 3: OpenImages is a vast dataset aggregated freely from Flicker, meaning many images (at least
aircraft and airplane images) are hugely out-of-context and irrelevant for most learning proce-
dures. A significant number of illustrations or drawings of airplanes is also present.

25

(a) Example images showing the unused domain taxiway on an airport (Sources: top row from l. to r.: modified
and taken from [101, 102, 103]).

(b) Example images showing airplanes during TOL. For detailed information explaining the separation of similar
airplane-images into either runway or sky during the annotation procedure, see section 5.2.

(c) Images from COCO depicting airplanes significantly out-of-context. Indoor airplanes, illustrations or seaplanes
are fairly common.

Figure 4: The first two subfigures show two other domains aircraft traverse, taxiway and TOL. These
images are idealized examples and do not appear as such in any of the used datasets. At the
bottom out-of-context images from COCO are shown. An example ground-truth domain label
is shown in the upper left corner of the individual images, showing the split of taxiway and
TOL images to apron/runway and runway/sky respectively.

26

Table 2: Comparison of common classes appearing in the two transition domains taxiway and TOL,
as well as other. The distinct lack of classes representing objects from taxiway and TOL in
datasets prohibits learning a proper distinction, while the vast amount of classes appearing out-
of-context reflect the necessity of the other domain. Classnames in italics reference categories
exlusive to some of the three datasets, not occurring in all three.

Optimal data Public data

Taxiway Airplane(non-target) Airplane

Taxiway Runway, Path, Road

Taxiway intersections Floor, Ground-other

Grass, Dirt Tree, Bush, Grass, Field

Yellow direction signs —

— Building

— Car, Bus, Truck

TOL Runway Runway, Path, Road

Floor, Ground-other

Sky, Clouds, Fog Sky, Sky-other, Clouds, Fog, Sun

Tree, Grass Tree, Bush, Grass, Field

Runway-lights, Extended-landing-gear —

— Building, Fence

— Car, Truck

— Mountain, Hill

Other Domain does not exist Ceiling, Floor, Walls

— Lake, River, Sea

— Crowd of people - not annotated

— Poster, Banner, Magazine, Photograph

— Chair, Window

— Museum, Exhibition

— etc.

27

All of these factors are motivations for creating superclasses: aggregating and merging
individual classes (see section 4.3).

Void transitions
Pixels on the outskirts of objects and background classes are often void, which comes
from the usage of imprecise annotation tools. This is especially prevalent in PASCAL-
Context.

Tiny/huge instances
Airplanes in sky are often seen from afar and are therefore very small, while instances
on the apron are oftentimes larger than the image and thus truncated. Tiny airplanes in
the sky further resemble birds.

Aircraft variability
While many different types of aircraft exist, more often than not the only classes that
appear are airplane and sometimes helicopter. Although this is only a minor drawback,
since the context of airplanes are of more interest in this work anyway.

Domain variability
A significant amount of images show airplanes in sky in front of clear blue skies, leading
to domain imbalance.

Out-of-context
Many aircraft instances are out-of-context, especially in COCO, appearing in museums,
as toys, on banners, photos, publicity or as attractions during an exhibition. Seaplanes
and many small private planes on fields or beaches are also a common occurrence.
These out-of-context airplanes necessitated the creation of the other domain.

Keeping these limitations in mind for future reference, the usage of public datasets is nev-
ertheless significantly less labor intensive than own data collection and annotation, especially
when semantic masks are required. The method with which these datasets were aggregated
and some simple preliminary dataset-statistics will now be shown.

3.4 Preliminary Aggregation of Airplane Images

All images with airplanes from ADE20K-SceneParsing, COCO-Stuff and PASCAL-Context
were aggregated. ADE features 317 labels for related object parts. The label definition is ambi-
tious and in some cases exhaustive – nevertheless the amount of images showing airplanes is
small. In the SceneParsing subset only 150 labels were used and although ADE includes the
classes airfield and runway, the airplanes in airfield are largely out-of-context (as Figure 2

has shown) and runway does unfortunately not exist in either COCO or PASCAL. Runway
being a specific class would be desirable for later context estimations and domain predictions
but COCO or PASCAL use other path-like classes listed in Table 1 instead. COCO-Stuff ex-
tends the things classes with roughly 90 classes for stuff, with many variations for certain stuff
textures. PASCAL-Context(59), the subset used in this work, only features 59 of the entire 456

28

classes. This is the same subset used by the authors for their evaluations – roughly 13% of
PASCAL-Context(59) pixels are void to begin with [4].

Using the original semantic masks, mapped masks can get created holding a custom defined
class label at every pixel, although for this first aggregation step the label values were left
unchanged. It is further possible to create custom RGB masks for ease of visualization. For
aggregation every image featuring at least one airplane pixel was aggregated.

If the dataset provides BBox annotations, those are used for extraction of instances. If it
does not, bounding boxes are put around blobs of same pixels. The algorithm for this simply
extends a rectangle encompassing 1 pixel at the start and iteratively includes all other pixels of
the same target class touching any already included pixels. This procedure has one downside,
namely separate airplane instances that overlap in the semantic mask due to occlusion are
treated as one instance. This is the case for the aircraft from ADE and PASCAL but it is a very
rare occurrence.

Afterwards, BBoxes were also enlarged percent-wise, by ten, twenty, thirty and forty percent
individually. The algorithm for this works as follows: the width of the instance w gets multiplied
by the set percentage p: x = w × p. Value x finally gets halved and this half substracted from
xmin and added to xmax (the range of the BBox) resulting in e.g. twenty percent increased
width for p = 0.2. The same procedure gets applied to the height. If the new coordinates of the
BBox would exceed the image borders, the increase is stopped on that side and not appended
to the opposite end, i.e. instances always get enlarged around the BBox center.

Every dataset was inspected more closely following aggregation and the following observa-
tions could be made:

ADE20K-SceneParsing
ADE only features 146 images with airplanes. 33 of the 150 classes are of interest for
aerial applications, although some of them describe very similar concepts. It only fea-
tures airplanes and no other aircraft. The class runway is unique to this dataset as well
as fence and field. Images on average are around 600 × 600 in size. Two pairs of du-
plicate images exist, one pair being a true duplicate and in the other pair the "duplicate"
is the same image except surrounded by a white border. One of the duplicates in both
pairs get removed respectively: during aggregation true duplicates get detected and re-
moved automatically, using image hash values. The border-padded image is manually
discarded.

COCO-Stuff
The largest of the three datasets in terms of number of airplane images with 3079 images
featuring airplanes. COCO-Stuff has 171 classes in total, 41 of which are applicable, with
many of them describing similar objects. Particularly for stuff classes, six labels exist to
describe various types of walls, and a few for ground and sky. Class names using the
"other" suffix are also common, e.g. ground-other, floor-other or wall-other for pixels
that annotaters were unsure of. The only type of featured aircraft are airplanes. Images
are around 640 × 480 in size. Besides a significant portion of out-of-context airplanes,
COCO also features some synthetic images, in the sense of screenshots from computer
programs or digital drawings.

29

PASCAL-Context
The total number of images with airplanes in this dataset is 597. It also features a handful
helicopter instances but since this class is unique to PASCAL they were not used. It has
456 classes in total of which around 30 are applicable. Here, many variations for building
and soil exist. The average image size is around 470 × 386. PASCAL-Context only
includes PASCAL-VOC images up to VOC2010, so any images from VOC2011 featuring
airplanes have no semantic annotation.

As output, all images and masks from the three datasets showing airplanes are obtained.
Also, a file for every dataset gets created listing all instances by image name and BBox co-
ordinates, specifically upper left and lower right corners of the BBox. This concludes the pre-
liminary aggregation of airplanes from ADE, COCO and PASCAL. We will next take a look at
the process of obtaining semantic context from these images and an application of context for
improved data harvesting.

30

4 Semantic Context Extraction and Exploitation
for Data Distillation

Having aggregated all airplanes from the three datasets ADE20K-SceneParsing, COCO-Stuff
and PASCAL-Context in the form of color images, semantic masks and BBox annotations,
the next step was to obtain the semantic context using this data. This chapter first outlines
the method used for obtaining semantic context, similar to the concept of label occurrence
frequency presented by Zhang et al. [64], followed by the definition of the SemanticAircraft
dataset deriving from ADE, COCO and PASCAL using context priors to guide the class-
mapping process. After filtering of images using context-priors the final context statistics on
SemanticAircraft are presented.

4.1 Obtaining Semantic Context and Label-Neighborhood
Measures

When working with pixel-wise labeled data other statistics in addition to those outlined in sec-
tion 3.4 can be formulated:

Label co-ocurrence
The distribution assessing the frequency that any pairs of labels x and y from the set of
labels l appear in the same image or instance, or co-occurrence of labels x and y, has
been shown to be not peaky enough as one would like [36]. Nevertheless, it does pro-
vide some preliminary information into the visual context, and can point out classes that
possibly describe similar things or stuff, which in turn helps the creation of superclasses.

Label frequency
Counting the number of pixels per class and in certain image regions yields the occur-
rence frequency. This simple measure provides answers in the form of: In this image/in-
stance 40% percent of pixels are sky, 20% sea and so forth and works akin to the concept
of occurrence frequency from [64].

Label location
When placing a grid on images, and counting the number of pixels per class in each grid,
a measure can be obtained similar to occurrence frequency although in a reversed sense,
instead stating pixels of sky occur to 40% in the upper left quadrant of images, 15% in the
lower right and so forth. For both label frequency and location photographer bias has a
significant impact, although more so for label location, since frequency generally uses a
much coarser (if any) grid on images to formulate statistics. Oftentimes the focus is put

31

on specific object instances, so objects occur most commonly in the center of an image.
For things such as airplanes or birds, which one would assume to be at the top of the
image when talking about scenery photography, bias is especially noticeable oftentimes
appearing in the center or even bottom center. At this point it should also be noted that
in an infinitely large dataset, the assumption of vertical symmetry holds, meaning objects
on the left and right side of the vertical symmetry axis appear equally often. The same
can not be said for horizontal symmetry, since the land-surface with its various objects
can be distinctly separated from the sky and horizon above.

Label-neighborhood
Measuring the frequency of certain label transitions in a directional sense allows the
formulation of neighborhood (or label-transition) statistics. Normally this is given using
a finite sets of bins, similar to label location, and most commonly in the VNN or Moore
neighborhood. Label-neighborhood gives an idea how may road pixels are directly below
airplane pixels for example. This transitional information highlights very broadly how our
world is built and can be seen as a generalization of the concept of support-relationships
shown by Choi et al. [1].

To summarize these measures using the example classes of sky and road: label co-
occurrence quantifies the co-occurrence of sky and road in the same image (patch), label fre-
quency measures how many pixels of sky and road appear in that patch, label location shows
the distribution of occurrences of sky and road over different patches, while label-neighborhood
finally measures the direct label transition from sky to road and vice versa in some neighbor-
hood. Since co-occurrence is known to yield flat distributions it was decided to forego this
measure. Frequency and location provide similar knowledge although the latter is more heav-
ily biased, so label frequency is the measure of interest instead. Finally label-neighborhood
was obtained as well, although its applications have proven limited and it was not used for later
domain prediction.

The semantic context module described in algorithm 1 extracts label frequency for a setM
of masks m. Besides the masks, the list of classes x ∈ Ru×1 is required (u is 150 for ADE, 171
for COCO and 59 for PASCAL). The pixel values for classes void and the target class, airplane
in this instance, are of particular interest. As a first step, to deal with beforementioned void
pixels at label transitions, the boundaries of the target instance are expanded by five pixels in
every direction, i.e. the instance gets dilated by 1 for five times and this becomes the separate,
target mask.

Then, as operations on masks are significantly faster than pixel-loops, for every class in x

the number of pixels in a certain patch of m is obtained and normalized with the total number
of pixels in that patch. For void pixels, they can either be ignored entirely or included and
ignored only if they occur in the dilated instance. As a result, a number of context distribution
vectors c are obtained. The context across an image is denoted ci, for every quadrant in
that image ci,q−I...IV . For the area in the BBox around the target ct is used, and context on
quadrants in that instance is denoted ct,q−I...IV . All of these vectors are also summed up and
averaged across the entire dataset of images, resulting in vectors: Cd,i, Cd,i,q−I...IV , Cd,t and
Cd,t,q−I...IV . So vector Cd,i,q−II for example gives the context in dataset d across the second

32

image quadrants. Quadrant-I is the top-right image quadrant counting counter-clockwise.

Algorithm 1 Obtaining semantic context

Requisites: A single mask m : ω → R1, holding a class-label for every pixel, or a set of masks
M, with ω = {1, . . . H} × {1, . . .W} being the set of pixels. A list of class labels x ∈ Ru×1,
in particular the value of label t for the target class and label v for void pixels.

1: function GETCONTEXT(M,x)
2: for m ∈M do
3: mext ← dilate(m, t, 1, 5) . Dilate the target outline five times by one pixel
4: for x in x do
5: if x 6= t, v then . By default, target and void pixels are ignored
6: cm,x ←

∑i=W,j=H
i=0,j=0 (mexti,j == x)

7: ∀x ∈ x : c← 100× cm,x∑
(cm)

8: return c . c : (u− 2)-dimensional vector with percentage pixel-count for every class x

Entries in c are also sorted by value i.e. the most common context class is first followed by
decreasingly frequent classes. The maximum number of recorded classes can be limited to
deal with long-tailedness, which is useful for datasets with a large amount of classes when the
majority of them occur only in small amounts.

In a second algorithm the direct label transition as label-neighborhood was obtained in the
VNN of airplane pixels. Once again, masks m and list of labels x are required. While al-
gorithm 1 works with masks instead of nested for-loops, algorithm 2 instead casts "beams"
from the image borders into the image until a target pixel is found. Once found, up to five
void pixels are stepped over backwards of the beam, and the next non-target pixel is noted
as label transition in that direction. This procedure is only accurate for convex shapes, while
in-between areas in concave surfaces are ignored.1 Furthermore, all pixels of the target are
treated as one instance so images with multiple instances lead to slightly unintuitive results.
Instance segmentation annotation would alleviate this last shortcoming. Label-neighborhood
is obtained on an image basis in the VNN around the target and averaged across an entire
dataset. The average runtime per 640× 420 image is 0.7 seconds for neighborhood estimation
and less than 20 milliseconds for label frequency. This module allows the calculation of context
and label-neighborhood in a general and intuitive way and it was applied to the datasets ADE,
COCO and PASCAL to obtain first statistical context measures.

1One other way of obtaining neighborhood would be to dilate concave regions until the convex hull is obtained and
then take pixels closest on the perpendicular to the tangent of the hull in every point.

33

Algorithm 2 Obtaining neighborhood label transition

Requisites: A single mask m : ω → R1, holding a class-label for every pixel, or a set of masks
M, with ω = {1, . . . H} × {1, . . .W} being the set of pixels. A list of class labels x ∈ Ru×1,
in particular the value of label t for the target class and label v for void pixels.

1: function GETNEIGHBORHOOD(M,x)
2: for m ∈M do
3: for (i, j)← (0, 0) to (W,H) do
4: if mi,j == t then
5: for d← 0 to 3 do . For all four directions, create vectors p
6: if d == 0 then
7: p← (−1, 0)
8: else if d == 1 then
9: p← (0,−1)

10: else if d == 2 then
11: p← (1, 0)

12: else if d == 3 then
13: p← (0, 1)

14: x← 0

15: while (m((i,j)+p) == v or t) and x ≤ 5 do . Step over void pixels around t
16: p← p× x
17: x← x+ 1

18: c←m((i,j)+p)

19: if c 6= t, v then
20: np,c ← np,c + 1 . np,c : class c neighboring pixels in direction p

21: N← N + n

22: ∀d ∈ [0, 3] : Nd ← 100× nm,d∑
(nm,d)

23: return N

4.2 Context Statistics for Airplanes from ADE, COCO and
PASCAL

The statistics shown in this section generally serve two purposes. First, they help give a
general understanding and semantic "feeling" for the dataset. This helps to understand the
scenes the airplanes appear in across the datasets without having to look at all the images
individually. The second point of the shown statistics is the influence on the decision-making
process of designing the target dataset, specifically which classes to derive from the source
datasets. This process is described in more detail in the next section.

For each of the three source datasets (ADE, COCO and PASCAL) the context is shown in
Tables 3, 4 and 5 respectively. The first column shows the dataset-wide context across whole

34

images cd,i.2 Using the previously stated infinite-sized dataset symmetry assumption, con-
texts for quadrants I/III and II/IV become identical: cd,i,q−I ≡ cd,i,q−III , cd,i,q−II ≡ cd,i,q−IV .
Columns two and three show cd,i,q−I and cd,i,q−III respectively. Lastly, column four gives the
context in the bounding boxes around aircraft cd,t. The last row additionally shows the number
of respective image regions without any context. In other words, these image segments con-
tain only airplane and/or void pixels. For more detailed statistics, in particular the context in
enlarged bounding boxes and quadrants of (enlarged) bounding, see Appendix B. Averaged
dataset-wide image label-neighborhood around airplanes is also given in Appendix B.

Overall the context statistics meet expectations, with a significant number of pixels labeled
as sky. The amount of sky pixels is particularly significant in PASCAL. Sky as context in the
lower image half is much more common in COCO and PASCAL, compared to ADE. The tables
also show some overlapping classes and synonymous class-names across datasets, therefore,
in order to create one coherent dataset of semantic aircraft images, another, refined step of
aggregation was undertaken.

2For the sake of visualization, results are rounded to one digit precision, the %-sign is omitted and only the top
twenty classes are shown.

35

Table 3: Image, image-quadrant and instance-wide semantic context around airplanes in the dataset
ADE20K-SceneParsing. The fairly high amount of sea context stems from fifteen images show-
ing an aircraft carrier and various fighter planes at sea. Sky context is significantly higher in the
top half of images than the bottom. A significant percentage of instances are without context,
while only some lower-half image quadrants are context-void.

Images Quadrant-I Quadrant-III Instances

sky: 40.4 sky: 65.8 runway: 37 sky: 30.3

runway: 19.4 building: 7.1 sea: 9.6 building: 16.8

sea: 7.4 sea: 5.9 grass: 8.3 runway: 16.4

building: 6.4 ceiling: 4.4 sky: 7.1 sea: 7.5

grass: 3.8 wall: 4.1 building: 7.0 wall: 4.6

wall: 3.1 runway: 2.8 floor: 6.2 grass: 4.5

floor: 3.1 tree: 2.6 person: 5.6 mountain: 3.2

ceiling: 2.4 windowpane: 1.4 earth: 3.4 tree: 2.2

earth: 2.1 earth: 0.9 road: 2.3 windowpane: 2

tree: 1.9 mountain: 0.9 wall: 1.8 floor: 2.0

person: 1.7 hill: 0.6 field: 1.5 road: 1.8

road: 1.1 grass: 0.6 tree: 1.3 person: 1.3

mountain: 0.9 person: 0.6 truck: 1.0 earth: 1.3

field: 0.9 escalator: 0.4 car: 0.9 field: 0.9

windowpane: 0.9 skyscraper: 0.3 sand: 0.7 ceiling: 0.8

car: 0.6 field: 0.3 seat: 0.7 car: 0.7

skyscraper: 0.5 car: 0.3 fence: 0.7 sand: 0.6

truck: 0.5 truck: 0.2 skyscraper: 0.6 hill: 0.5

hill: 0.5 column: 0.1 mountain: 0.5 signboard: 0.4

sand: 0.4 pole: 0.1 escalator: 0.5 pole: 0.3

0/142 (0%) 0/142 (0%) 4/142 (2.82%) 29/272 (10.66%)

36

Table 4: Semantic context around airplanes in the dataset COCO-Stuff. Sky-like classes such as sky-
other, clouds and fog are dominating the context. A much lower percentage of image-patches
are void of any context, compared to ADE20K.

Images Quadrant-I Quadrant-III Instances

sky-other: 35.4 sky-other: 49.1 sky-other: 20.8 sky-other: 32.6

clouds: 16.0 clouds: 22.2 road: 17.1 clouds: 16.2

road: 8.8 fog: 4.9 clouds: 9.2 building-other: 9.1

grass: 5.1 tree: 3.9 pavement: 9.2 road: 7.2

pavement: 5.0 building-other: 3.7 grass: 9.1 tree: 5.1

tree: 3.5 mountain: 2.2 ground-other: 4.1 grass: 4.1

building-other: 3.4 ceiling-other: 1.5 building-other: 3.0 fog: 3.6

fog: 3.2 road: 1.4 tree: 3.0 pavement: 3.4

mountain: 2.4 grass: 1.3 mountain: 2.5 mountain: 2.5

ground-other: 2.2 person: 1.0 sea: 2.4 ground-other: 1.6

sea: 1.6 pavement: 1.0 person: 1.9 person: 1.3

person: 1.4 wall-other: 0.7 truck: 1.5 floor-other: 1.1

ceiling-other: 0.8 window-other: 0.7 fog: 1.4 sea: 1.0

truck: 0.8 sea: 0.7 floor-other: 1.4 metal: 1.0

floor-other: 0.8 metal: 0.6 dirt: 1.4 hill: 1.0

metal: 0.7 ground-other: 0.6 fence: 1.0 window-other: 1.0

dirt: 0.7 hill: 0.4 sand: 0.9 ceiling-other: 0.8

fence: 0.6 wall-concrete: 0.3 metal: 0.9 fence: 0.7

wall-other: 0.6 truck: 0.3 snow: 0.7 wall-other: 0.7

window-other: 0.6 wall-panel: 0.3 bush: 0.5 truck: 0.6

9/3077 (0.29%) 20/3077 (0.65%) 18/3077 (0.59%) 29/5270 (0.55%)

37

Table 5: Semantic context around airplanes in the dataset PASCAL-Context. As column 2 shows, the
upper half of images is heavily dominated by sky. The proportion of context-less image-regions
is similarly low to COCO-Stuff.

Images Quadrant-I Quadrant-III Instances

sky: 58.0 sky: 77.5 sky: 37.2 sky: 54.0

ground: 12.0 building: 7.4 ground: 23.0 building: 10.6

grass: 7.4 tree: 4.4 grass: 13.5 ground: 10.4

building: 6.1 mountain: 2.6 road: 7.0 grass: 6.3

tree: 4.0 grass: 1.7 building: 5.5 tree: 5.2

road: 3.5 ground: 1.5 tree: 3.6 road: 2.7

mountain: 2.0 ceiling: 1.3 floor: 1.9 mountain: 2.4

floor: 1.0 wall: 1.2 water: 1.5 wall: 2.3

water: 0.9 person: 0.5 mountain: 1.4 floor: 1.4

wall: 0.9 road: 0.5 person: 1.1 person: 0.9

person: 0.8 truck: 0.3 snow: 1.0 ceiling: 0.9

ceiling: 0.8 water: 0.3 fence: 0.9 water: 0.7

snow: 0.6 fence: 0.2 truck: 0.7 truck: 0.6

fence: 0.5 light: 0.2 wall: 0.5 snow: 0.5

truck: 0.5 window: 0.2 car: 0.4 fence: 0.4

car: 0.2 snow: 0.1 boat: 0.4 car: 0.3

boat: 0.2 floor: 0.1 window: 0.2 window: 0.3

window: 0.2 car: 0.04 food: 0.2 light: 0.2

sign: 0.1 sign: 0.02 sign: 0.1 boat: 0.1

food: 0.1 boat: 0.01 chair: 0.1 sign: 0.04

2/582 (0.34%) 5/582 (0.86%) 5/582 (0.86%) 5/811 (0.62%)

38

4.3 Data Distillation for Aggregation of SemanticAircraft

When training a more sophisticated learning framework relying on annotated public datasets,
one single pass of data aggregation does not yield the desired data in terms of quantity, re-
dundancy, distribution characteristics, object size and many of the other already discussed
parameters. After preliminary aggregation a step of data distillation helps filter out irrelevant or
redundant data. This leads to a target dataset which has been appropriately tuned for desired
tasks, environment or other requirements.

Following the context analysis, only a subset of the total available classes per dataset ap-
pear in images with airplanes and the long-tailedness is very noticeable. Looking for example
at the context on COCO, multiple classes exist for the concept of ground: road, pavement,
ground-other, floor-other, dirt and merging those classes allows the higher-level superclass
representation to include similar, although slightly different classes from ADE and PASCAL
such as runway, floor, earth, road, field and ground. Additionally, this reduces sparsity of
the vectors c representing context which is a benefit for learning models. Therefore, all three
datasets were again aggregated while mapping and merging many classes to superclasses, to
form SemanticAircraft. Figure 5 shows the semantic hierarchy of SemanticAircraft with source
and target classes.

Images were aggregated using this mapping scheme and instances further increased by ten
to forty percent in size. The context for this dataset was obtained using the semantic context
module and can be observed in Tables 6 and 7 for images and instances respectively.

Increasing the instance area means capturing more distant context while small instances
provide a narrow field-of-view around the airplane. Following empirical analysis it was decided
to proceed with thirty percent increased instances, which struck a good balance between incor-
porating more distant context elements while at the same time leaving out irrelevant features.

A significant portion of images and instances feature undesirable context traits, namely a
high-percentage of void and indoor pixels, signifying out-of-context airplanes. Since semantic
context encapsulates a high-level understanding of the scene, it can be used to implement
distillation algorithms that work on such a level. These filter can be combined with lower level
filters observing object size or aspect ratio for strong data distillation. Semantic context nat-
urally lends itself to the removal of redundancies from the data, or the selection of specific
instances/images that only fit a certain semantic characteristic. This can be done by filtering
out all patches where the context in specific classes is higher or lower than a certain threshold.
Another alternative is to filter out the top x-percent of patches via quantiles. The algorithm
applied in this work follows the latter methodology although in a way that ends up filtering out
(almost) all patches with any indoor pixels.

In particular, using the set C of context vectors c for any patch (Ci for instances and Cq−I...IV
for quadrants), sort C using the values of the context for any desirable class that is to be
filtered. Then, obtain the quantile value qp at the threshold p and remove all patches with
context in that class above qp, while using the mean of the quantile-values for quadrants-I/II and
III/IV respectively (large-scale symmetry assumption). The filter algorithm can be observed in
algorithm 3.

39

Table 6: Context across images and image-quadrants of SemanticAircraft pre-filtering. Sky, pavement
and building are the most common context elements. Void labels were included in this esti-
mation and the difference in void pixels between upper and lower image halves are significant.
This can be explained due to nature of scenery images naturally being more cluttered in the
bottom half, with buildings, pavement variants and plants appearing in close proximity leading
to an increased number of void pixels, either due to the uncertainty during annotation or the
numerous labeling transitions carrying broad void-pixelated edges. Since void pixels were in-
cluded in this calculation, the last row shows the number of image-regions only holding airplane
pixels, in other words heavily truncated airplanes.

Images Quadrant-I Quadrant-II Quadrant-III Quadrant-IV

sky: 53.2 sky: 74.5 sky: 74.7 sky: 30.7 sky: 30.7

pavement: 15.9 building: 4.5 building: 4.3 pavement: 30.2 pavement: 29.5

soil: 6.9 plant: 4.0 plant: 4.0 soil: 12.4 soil: 12.4

void: 5.4 void: 3.9 void: 3.7 void: 6.7 void: 7.0

building: 4.2 indoor: 3.7 indoor: 3.7 building: 3.9 building: 4.1

plant: 3.8 pavement: 2.6 pavement: 3.0 plant: 3.6 plant: 3.6

indoor: 2.9 elevation: 2.5 elevation: 2.6 waterbody: 2.8 waterbody: 2.9

elevation: 2.5 soil: 1.6 soil: 1.6 elevation: 2.5 elevation: 2.5

waterbody: 1.8 waterbody: 0.8 waterbody: 0.8 indoor: 2.1 indoor: 2.0

object: 1.3 object: 0.8 person: 0.6 object: 1.9 object: 2.0

person: 1.2 person: 0.7 object: 0.6 vehicle: 1.7 person: 1.8

vehicle: 1.0 vehicle: 0.3 vehicle: 0.4 person: 1.6 vehicle: 1.6

0/3801 (0%) 6/3801 (0.16%) 3/3801 (0.08%) 4/3801 (0.11%) 8/3801 (0.21%)

Due to the overwhelming proportion of patches having 100-percent sky context, no filtering
using sky quantiles took place.3 – patches were only filtered using void and indoor statis-
tics. Following the heuristic of filtering all patches showing (almost) any indoor pixels while not
wanting to filter patches with no indoor pixels and filtering the same amount of patches per
class, the p-values were determined empirically as p = (0.93, 0.93). The process of determin-
ing p-values and corresponding quantiles can be seen in Table 8.

Some observations can be made using the mean between qq−I / qq−II and qq−III / qq−IV
respectively. Without taking the mean, after filtering for either indoor or void with p = 0.85,
11843 quadrants remain. When using the mean, 11838 quadrants after indoor-filtering and
11850 after void-filtering remain instead. More patches were dropped during the former filtering
process, i.e. more patches have indoor context in [qmean, qupper] than [qlower, qmean]. This in turn
means, that once patches do have indoor context, this context is significantly large, hinting

3q0.9 for sky was 100-percent, i.e. at least 10-percent of patches had only sky as context.

40

Table 7: Context across instances in various scale sizes of SemanticAircraft – pre-filtering. In the header
row, the first number describes the percentage increase size of bounding boxes, while the
second number gives instances without any context (only aircraft pixels) in that scaling, from a
total of 6354 instances. The number of context-less instances decreases as the bounding box
area increases.

0% (14) 10% (11) 20% (6) 30% (5) 40% (2)

Sky 50.7 50.5 50.3 50.3 50.3

Pavement 12.7 13.3 13.9 14.3 14.6

Building 9.8 9.5 9.2 8.9 8.6

Soil 5.5 5.6 5.6 5.7 5.8

Plant 5.3 5.1 4.9 4.8 4.8

Void 4.3 4.5 4.6 4.7 4.7

Indoor 3.5 3.5 3.5 3.5 3.5

Elevation 3.3 3.2 3.1 3 3

Object 1.6 1.6 1.6 1.6 1.6

Waterbody 1.4 1.4 1.4 1.4 1.4

Person 1.1 1 1 1 1

Vehicle 0.8 0.8 0.8 0.8 0.8

Algorithm 3 Semantic context filter

Requisites: Set C of vectors c holding statistics for every patch to be filtered. Labels x (in this
case void and indoor) that shall get filtered with quantile percentages p = (0.93, 0.93).

1: function FILTERCONTEXT(C,x,p)
2: for (x, p) in (x,p) do
3: qi,x ← quantile(C(i,x), p)
4: qq−I...IV ,x ← quantile(C(q−I...IV ,x), p)

5: Si,x ← Ci,x < qi,x . Si: instances after filtering with context class x
6: for i← I to IV do
7: if i ≤ II then
8: Sq−i,x ← Ci,x < mean(q(q−I,x), q(q−II,x))

9: else . Sq−i,x: quadrants at location i after filtering for x
10: Sq−i,x ← Ci,x < mean(q(q−III,x), q(q−IV ,x))

11: return Sindoor,Svoid

41

Table 8: Results of filtering SemanticAircraft by context using classes void and indoor. Top row gives
the p-values for the quantiles while table entries are the corresponding values qp. Filtering the
top five percent by indoor is too lenient, allowing up to 18-percent of indoor pixels in instances,
while setting pindoor = 0.85 patches without any indoor pixels are arbitrarily filtered. Final values
(0.93, 0.93) allow barely any indoor pixels while e.g. instances with 16.8-percent of void pixels
are still accepted, striking a good balance.

pvoid pindoor

0.8 0.85 0.93 0.95 0.85 0.93

Instances 3.26 5.94 16.82 18.08 0.0 2.61

Quadrant-I 0.8 2.78 16.31 15.23 0.0 0.91

Quadrant-II 0.88 2.52 13.44 15.94 0.0 0.92

Quadrant-III 6.56 11.27 29.25 4.25 0.0 0.31

Quadrant-IV 7.14 11.96 31.85 4.46 0.0 0.86

towards the fact that few patches are in highly indoor environments. On the other hand, less
patches after void-filtering were dropped, i.e. if there is void in an image patch it is usually not
that dominant.

Only the set of patches S, both quadrants and instances, was used which satisfied both
constraints, i.e.: S = Sindoor ∩ Svoid. As a last filtering step, some low-level filters were applied.
In particular, all instances with width or height shorter than 60 pixels were discarded. Lastly,
patches with aspect ratio larger than 6:1 in either direction were also discarded, since this
causes strong distortions when resizing images for the CNN. This leaves 3854 instances and
13265 image-quadrants respectively.

42

SemanticAircraft

person
PASCALperson
COCOperson
ADEperson

plant

PASCALtree

COCO
tree

plant-other
bush

ADEtree

elevation

PASCALmountain

COCO
mountain

hill

ADE
mountain

hill

soil

PASCALsnow
grass

COCO

straw
snow
sand
rock

gravel
grass
dirt

ADE

sand
land
grass
field
earth

building

PASCALbuilding

COCO

solid-other
skyscraper

house
building-other

bridge

ADE
skyscraper

building

pavement

PASCAL
runway

road
ground

COCO

road
pavement

ground-other
floor-other

ADErunway
road

sky

PASCALsky

COCO
sky-other

fog
clouds

ADEsky

airplane
PASCALaeroplane
COCOairplane
ADEairplane

SemanticAircraft

vehicle

ADE

bus
car

truck
van

COCO
bus
car

truck

PASCAL
bus
car

truck

waterbody

ADE
river
sea

COCO
river
sea

water-other
PASCAL water

indoor

ADE

ceiling
floor
wall

windowpane

COCO

ceiling-other
floor-tile

roof
tent

wall-brick
wall-concrete

wall-other
wall-panel
wall-stone

wall-tile
wall-wood

window-other

PASCAL

ceiling
floor
wall

window

object

ADE

conveyor_belt
escalator

fence
pole

signboard
stairs

stairway
streetlight

COCO

backpack
cage
fence
metal

platform

PASCAL
fence
light
sign

void

Figure 5: The class hierarchy of SemanticAircraft, deriving from ADE20K-SceneParsing, COCO-Stuff
and PASCAL-Context. SemanticAircraft consists of twelve classes in total: Aircraft, void and
ten context superclasses. Indoor consists of many types of surfaces predominately found in
indoor environments.

43

4.4 Context Statistics on SemanticAircraft

For this final, distilled collection of images, semantic masks and bounding box annotations,
semantic context statistics were obtained using the semantic context module – every individual
quadrant and instance is now treated as a single image. Table 9 shows the results for this
context extraction.

Table 9: Visual context of SemanticAircraft. First column gives the average context across all 3854
instances. Second and third column give the context in quadrants I and III of the instances
respectively. Last column shows the context across all 13265 quadrants, treated as individual
images. Void pixels were ignored during calculation. No image-regions without any semantic
context are included any longer.

Instances Instance-Q-I Instance-Q-III Image-Quadrants

sky: 57.2 sky: 71.6 sky: 38.5 sky: 58.6

pavement: 15.8 building: 8.6 pavement: 30.9 pavement: 17.4

building: 7.5 plant: 6.3 soil: 10.4 soil: 7.8

soil: 6.2 pavement: 4.3 building: 6.1 building: 4.3

plant: 5.1 elevation: 3.7 plant: 3.8 plant: 4.0

elevation: 3.2 soil: 2.8 object: 2.7 elevation: 2.8

object: 1.5 waterbody: 1.2 elevation: 2.4 waterbody: 1.9

waterbody: 1.4 object: 0.8 vehicle: 1.9 object: 1.2

person: 1.2 person: 0.6 person: 1.8 person: 1.1

vehicle: 0.9 vehicle: 0.2 waterbody: 1.5 vehicle: 1.0

indoor: 0.01 indoor: 0.02 indoor: 0.1 indoor: 0.02

Most noticeable is the significant drop of indoor-context due to filtering. For this estimation
void-pixels were again ignored, since they do not contribute any semantic information and the
unsupervised models building on context vectors C for domain prediction only use semantically
relevant classes. Airplane (or generally target) pixels are excluded since context is assumed
to be independent of the target itself – section 5.2 shows that while this assumption holds for
semantic context reasoning itself, in domain prediction the presence or absence of the target
can influence the domain category.

The correlation matrices across instances ĉor(I) and quadrants ĉor(Q) were also obtained,
showing the correlation coefficients between individual superclasses as variables. Correlation
is dimensionless in comparison to covariance so changes in the scales of the values do not
affect it. Additionally, while covariance matrices hold individual variances v̂ar(x) in the diagonal,
the correlation of a variable with itself is always 1. A positive value denotes positive relationship,
i.e. ĉov(building,pavement) = 0.07 means any certain context amount for buildings coincides

44

with similar amounts for pavement. On the other hand, ĉov(sky, building) = −0.44 means
high amounts of sky context usually occurs when the amount of building pixels is small and
vice versa. Figure 6 shows the correlation matrices for instances and quadrants at the top and
bottom respectively.

Correlation between sky and any other context class is negative, again highlighting the fact
that many patches carry exclusively sky as context. The strongest positive correlations are
found in instances: ĉor(plant, soil) = 0.18 and ĉor(pavement,vehicle) = 0.14. The pairwise
correlation between label frequencies are akin to co-occurrence and in this light the correlation
matrices show that the distribution over co-occurrences between classes is very flat, only sky
causing significant peaks.

The direct labeling transition as label-neighborhood was additionally calculated. Figures 7

and 8 shows these statistics. For every class in SemanticAircraft the figures show the direction,
up, left, down or right, pixels from said class appear in relation to airplane pixels. These
statistics state, that for example whenever pavement pixels directly border airplane pixels, in
40.6 these pixels appear below the airplane for instances and 32.4 for quadrants. The statistics
are spread out more equally for quadrants, which is to be expected, since all image-quadrants
were grouped together and e.g. sky pixels appearing in the upper quadrants but below some
airplane are pixels counted as "down" or below the airplane. Without depth or 3D information,
some transitions can appear unintuitive, for example the fact, that building-pixels seem to
appear above airplanes, when in reality the building are located in some distances behind the
airplanes instead. For classes pavement and soil the results meet expectations – they are
consistently placed below airplanes.

While this answers the distribution of pixels per class, the absolute percentages of labeling
transitions per-direction are also of interest to determine the classes in closest proximity to air-
planes. Tables 10 and 11 show, that the labeling transitions are dominated by the airplane-sky
pair, with pavement or building as the next most common transition classes. Downward-
transitions are the most varied, with different things or stuff appearing below airplanes some-
what frequently. Furthermore, strong differences between Up-Down transitions are noticeable
while Left-Right transitions are very similar. While the insights provided into the scene geom-
etry of the images is noteworthy, no further application of the label-neighborhood transition
statistics has taken place in this work.

With these context statistics in mind, the aggregation of SemanticAircraft is concluded. In
the next chapter, the applicability of these context statistics for the prediction of domains of the
airplanes will be shown.

45

S
ky

P
av

em
en

t

B
ui

ld
in

g

S
oi

l

E
le

va
tio

n

P
la

nt

Pe
rs

on

Ve
hi

cl
e

W
at

er
bo

dy

In
do

or

O
bj

ec
t





Sky 1 −.57 −.44 −.4 −.25 −.37 −.13 −.15 −.18 −.08 −.19
Pavement −.57 1 .07 −.01 −.07 −.03 .03 .14 −.07 .07 −.02
Building −.44 .07 1 −.06 −.04 −.03 −.05 .05 −.03 .03 .01

Soil −.4 −.01 −.06 1 −.01 .18 .01 −.04 −.02 −.01 −.01
Elevation −.25 −.07 −.04 −.01 1 −.03 −.03 −.04 .01 .01 .01

Plant −.37 −.03 −.03 .18 −.03 1 −.02 −.04 −.03 .03 .01

Person −.13 .03 −.05 .01 −.03 −.02 1 .01 −.01 −.00 .01

Vehicle −.15 .14 .05 −.04 −.04 −.04 .01 1 −.03 .02 .03

Waterbody −.18 −.07 −.03 −.02 .01 −.03 −.01 −.03 1 −.01 .06

Indoor −.08 .07 .03 −.01 .01 .03 −.00 .02 −.01 1 .04

Object −.19 −.02 .01 −.01 .00 .01 .01 .03 .06 .04 1

(a) Correlation matrix for SemanticAircraft instances. Correlation is low, be it positive or negative, for most context
classes other than sky.

S
ky

P
av

em
en

t

B
ui

ld
in

g

S
oi

l

E
le

va
tio

n

P
la

nt

Pe
rs

on

Ve
hi

cl
e

W
at

er
bo

dy

In
do

or

O
bj

ec
t





Sky 1 −.66 −.24 −.44 −.17 −.23 −.17 −.22 −.17 −.03 −.18
Pavement −.66 1 −.04 −.02 −.09 −.1 .05 .18 −.08 .01 .03

Building −.24 −.04 1 −.04 −.02 −.01 −.03 −.00 −.00 .03 .00

Soil −.44 −.02 −.04 1 −.05 .03 .01 −.02 −.02 .01 .03

Elevation −.17 −.09 −.02 −.05 1 −.02 −.03 −.04 −.01 −.00 −.02
Plant −.23 −.1 −.01 .03 −.02 1 −.02 −.03 −.01 .03 −.00
Person −.17 .05 −.03 .01 −.03 −.02 1 .02 −.00 −.00 .03

Vehicle −.22 .18 −.00 −.02 −.04 −.03 .02 1 −.03 −.00 .04

Waterbody −.17 −.08 −.00 −.02 −.01 −.01 −.00 −.03 1 −.00 −.00
Indoor −.03 .01 .03 .01 −.00 .03 −.00 −.00 −.00 1 .02

Object −.02 .03 .00 .03 −.02 −.00 .03 .04 −.00 .02 1

(b) Correlation matrix for quadrants of SemanticAircraft. Correlations between context classes are similar to those
observed on instances.

Figure 6: Correlation matrices of the instances and quadrants of SemanticAircraft, giving insight into
the semantic content of images similar to the concept of label co-occurrence. Notable is the
change of correlation between building and pavement from instances to quadrants, possibly
alluding to the fact that buildings were truncated in quadrants.

46

31.1%

23.5%

19.6%

25.8%

(a) Building

30.8%

25.3%

18.2%

25.7%

(b) Elevation

26.7%

26.7%

20.0%

26.6%

(c) Indoor

17.9%

25.9%

33.3%

22.9%

(d) Object

14.0%

23.3%

40.6%

22.1%

(e) Pavement

10.5%

30.9%

22.1%

36.5%

(f) Person

32.6%

24.5%

18.4%

24.5%

(g) Plant

28.5%

25.8%

19.9%

25.8%

(h) Sky

17.0%

23.3%

36.7%

23.0%

(i) Soil

9.1%

23.1%

45.1%

22.7%

(j) Vehicle

24.3%

24.9%

26.2%

24.5%

(k) Waterbody

Figure 7: Per-class label-neighborhood transitions around airplanes in SemanticAircraft instances.

47

29.1%

23%

21.8%

26.1%

(a) Building

28.8%

25%

21.2%

25%

(b) Elevation

26.7%

20%

26.6%

26.7%

(c) Indoor

21.1%

24.9%

30.2%

23.8%

(d) Object

18.3%

25.3%

32.4%

24%

(e) Pavement

15.5%

28.7%

24.6%

31.2%

(f) Person

30.4%

24.3%

21.1%

24.3%

(g) Plant

27%

25.3%

22.5%

25.2%

(h) Sky

20.9%

24.3%

30.6%

24.2%

(i) Soil

14%

27.2%

35%

23.8%

(j) Vehicle

25.5%

24.6%

25.7%

24.2%

(k) Waterbody

Figure 8: Per-class label-neighborhood around airplanes in SemanticAircraft quadrants.

48

Table 10: Direction-wise label transition from airplane pixels to other classes in instances of Semanti-
cAircraft. Sky is not only the most prevalent context class as a whole, it is also oftentimes the
stuff-class immediately surrounding airplanes.

Up Down Left Right

sky: 59.2 sky: 41.4 sky: 53.8 sky: 53.7

building: 11.1 pavement: 27.1 pavement: 15.6 pavement: 14.8

pavement: 9.4 soil: 10.5 building: 8.4 building: 9.2

plant: 7.7 building: 7.0 soil: 6.7 soil: 6.6

soil: 4.9 plant:4.4 plant: 5.8 plant:5.8

elevation: 3.7 object: 3.3 elevation: 3.0 elevation: 3.1

object: 1.8 elevation: 2.2 object: 2.6 person: 2.7

waterbody: 1.3 person: 1.6 person: 2.3 object: 2.3

person: 0.8 waterbody: 1.4 waterbody: 1.3 waterbody: 1.3

vehicle: 0.2 vehicle: 1.2 vehicle: 0.6 vehicle: 0.6

indoor: 0.04 indoor: 0.03 indoor: 0.04 indoor: 0.04

Table 11: Label-neighborhood transitions from airplane pixels to other classes in SemanticAircraft-
quadrants.

Up Down Left Right

sky: 48.3 sky: 40.4 sky: 45.4 sky: 45.2

pavement: 10.0 pavement: 17.7 pavement: 13.8 pavement: 13.1

building: 7.2 soil: 7.3 soil: 5.8 building: 6.5

plant: 5.9 building: 5.4 building: 5.7 soil: 5.8

soil: 5.0 plant: 4.1 plant: 4.7 plant: 4.7

elevation: 2.8 elevation: 2.1 elevation: 2.5 elevation: 2.5

object: 1.4 object: 2.0 person: 2.3 person: 2.5

person: 1.2 person: 1.9 object: 1.6 object: 1.5

waterbody: 1.2 waterbody: 1.2 waterbody: 1.1 waterbody: 1.1

vehicle: 0.3 vehicle: 0.9 vehicle: 0.7 vehicle: 0.6

indoor: 0.02 indoor: 0.02 indoor: 0.01 indoor: 0.02

49

5 Domain Prediction on SemanticAircraft

Having used semantic context to gain insights into the datasets and filter irrelevant and unde-
sirable patches, this chapter will introduce the application of semantic context for the task of
domain prediction. Figure 9 gives a general overview of the framework for domain prediction
using either RGB input images or semantic masks.

Figure 9: The developed framework can predict domains of SemanticAircraft instances and quadrants
using either input images with domain-labels training a CNN or use the extracted context
vectors C with either a (quasi) deterministic threshold algorithm as baseline or unsupervised
mixture models for clustering of context vectors.

5.1 Domain Prediction as Computer Vision Task

Domain adaptation outlined in section 2.4 aims to produce a model that performs well simul-
taneously in two domains, most commonly source S and target T , the former consisting of
synthetic and the latter of real images. When using domains as characteristic expanded se-
mantic context around objects, domain prediction instead aims to parse the scene to allow
decision-making about the specific domain an object is in. As such it is a simple classification
task not limited to images – instead learning the domain predictive function f(·) uses any mea-
sure or representation of semantic context. An implicit representation is the one found in CNN

50

featuremaps, using convolutional filters to capture context. An explicit, statistical measure are
the context vectors C obtained from the semantic context module. While function f(·) is used
for domain prediction, g(·) might be used for any other CV task, such as object detection or
tracking. Using the predicted domains from f(·) as input for the learning framework encapsu-
lating g(·), predicted domains allow the latter function to be trained and fine-tuned on any one
specific target domain separately – no generalization across vastly different visual domains is
required. Instead the parameter set of g(·) is exchanged dynamically according to predicted
domain labels and g(·) is expected to yield much better results than one model trained on all
three domains instead. In this work, only the problem of obtaining f(·) is tackled.

To summarize, the domain prediction module is used to separate instances and image quad-
rants from datasets into domains based on semantic context priors. Three models were em-
ployed to this end: a specifically developed threshold algorithm as baseline, unsupervised mix-
ture models and supervised CNNs. The three models take broadly the following approaches:

Baseline
First, define domains an as ontology of classes and superclasses and using the context
vectors Ci and Cq for instances and quadrants respectively, run a threshold algorithm
using ranges and weights for specific context superclasses. This does not necessitate
ground truth (GT) labels, although feedback using classification accuracy is used to tune
the parameters.

Unsupervised
Using the (training) set of context features Ci and Cq, fit an unsupervised ML model to
predict the domain for unseen context vectors, i.e. interpret label statistics per patch
as features and use unsupervised learning for clustering – reinterpret the clusters for a
classification setting. This procedure does not use GT labels in any way to influence the
learning, but only for final evaluation against the other models.

Supervised
Instances and quadrants of color-images from SemanticAircraft were assigned a GT
domain label manually. The CNN uses these images and annotations for supervised
classification.

The general premise when using supervised vs. unsupervised models is different: Super-
vised algorithms are highly capable of learning/memorizing the data structure and infer a cat-
egory for unseen samples. As such, supervised models such as neural networks are highly
accurate, but provide little insight into the training data itself. Unsupervised models, and espe-
cially generative methods, instead provide further insight into the distributions that created the
data itself, an explainability that is not present in CNNs. For the purpose of domain prediction,
classification accuracy is the primary goal and all models are tuned in a way to maximize this
accuracy – although this is not straightforward for unsupervised models if no ground-truth is
known. Accuracy with supervised methods is expected to surpass other models, but with unsu-
pervised clustering algorithms the created cluster-structures can additionally provide insights
into possible subdomains of the data.

51

Since the supervised CNN as classifier requires GT domain labels, instances and quadrants
from SemanticAircraft were manually annotated with domain labels in a one-hot scheme, i.e.
every instance/quadrant is assigned exactly one domain label. Using GT labels also allows the
calculation of classification accuracy, specifically recall and F1, across the different prediction
models to enable cross-evaluation.

5.2 Domain Annotation for SemanticAircraft

The four domain-labels are: Apron (0), runway (1), sky (2) and other (3) and any one labels
is assigned to any instance and image-quadrant of SemanticAircraft, after context filtering. It
should be noted that the scale in which context is to be considered is still an open question. In
this work it was decided to work with increased instances and image quadrants to provide both
narrow-range context around the airplane and far-range context across the image. Additionally,
separating images into quadrants makes one-hot classification better behaved: Assigning a
single label to an image patch is difficult – this is already the case with quadrants and instances
but it is exacerbated on an image level, where the airplane might only be shown in front of the
sky, but the bottom half might be filled with airport buildings, runways or similar objects.

A number of rules were established to guide the annotation process for both instances and
quadrants. It should be noted that the annotation process is not straight-forward and no two
annotaters would give the exact same labels on any sufficiently large and varied set of im-
ages. In particular, instances or quadrants would often-times show features strongly related
to apron/runway at the bottom while clear sky was visible in the upper segments. It should
further be noted that all patches were shuffled for annotation, i.e. no instances or quadrants
from the same image appear in sequence (unless by chance). This was done to prevent bias
while annotating, which would arise from including information seen in a previous quadrant to
form a decision on the next. Finally, exceptions to any of the established rules were made in
some cases. Figures 13 and 14 in chapter 6 show example instances and quadrants from all
domains.

• Patches in grayscale or sepia tones were classified as other.

• Images with natural or artificial (padded) borders, such as scanned photographs or illus-
trations were classified as other.

• Airplanes shown on unusual airfields, such as lawns, fields, beaches or on water were
labeled as other.

• Airplanes in otherwise atypical environments such as a snow-covered scenery were as-
signed a respective domain label, if a distinction between apron and runway could be
made. If this distinction was not possible they were assigned other.

• The few airplanes left in indoor scenes that were not filtered out were classified as other.

• Airplanes from ADE on or around the aircraft carrier were classified as other.

52

• Monochrome patches with no airplane visible were labeled as sky if the patch was blue
or grey and some textures were recognizable. If no image texture was present at all,
patches were labeled as other.

• Since the semantic context is derived from neighboring pixel-labels in the image plane,
the point-of-view when observing objects plays a significant role. Images captured from
airplanes themselves show e.g. fields, forests or the sea as context while images from
below would show mainly sky and clouds.

• Some patches show an airplane in the foreground landing or taking off from the runway,
while in the back the rest of the airport apron is visible – or the focused instance is small
in the background while the foreground is dominated by another airplane. The assigned
label always deals with the surroundings of the instance in question, even if more image
area falls to context at other distances different from the target.

• Another distinguishing factor between apron and runway was the presence of people. If
people are present and were, for example, boarding an airplane, the patch was labeled
as apron, even if the strip of asphalt is mostly likely used for take-off and landing as
well. This was prevalent at small airports in rural places, where the runway often times
functions as the apron as well.

• Since the amount of patches showing mainly sky as context is by far the largest, to help
preemptive class balancing while still trying to properly assign TOL instances to either
runway and sky, patches were labeled as runway even if the context was largely sky,
as long as treetops or other ground features expected in the vicinity of airfields appear
near the bottom edge. If the airplane appears to be far away from the actual runway, but
a few treetops are visible, the domain would be sky regardless.1

• In general, viewing angle, landing-gear visibility and relative size of the airplane vs. other
objects was used to judge whether an airplane was bound to be landing soon/just took-off
and assigned runway or if it was in-flight and assigned sky.

• Very few aircraft were captured in the taxiway domain and even if, the markings on
the ground give a clue as to the type of path the aircraft is on, allowing the distinction
between apron and runway. In general, prolonged straight white lines mark the runway,
while curved yellow lines signify paths in close proximity to the apron.

• A trend across all datasets could be noticed: Many airplanes were in fact captured during
take-off or landing.

• Captures of airplanes at the apron were often of lower image quality, taken through a
window, from the inside of airplanes or would show close-by, heavily occluded airplanes.

1The thirty-percent increase of bounding boxes makes a significant impact in this regard. If instances were instead
not increased in size at all, an increased number would instead be assigned sky.

53

• It should be noted, that a small amount of quadrants showed no airplane-pixels at all.
Such patches were not excluded and assigned a domain label depending on the respec-
tive content. This means, that two image quadrants from the same image with similar
background, but one quadrant showing the airplane and the other not, look the same
context-wise to the baseline and unsupervised models, since target pixels were excluded
for calculation of C. The CNN on the other hand works on input images and incorporates
this presence/absence in its reasoning.

• Finally, if it was not possible to decide on either apron, runway or sky for example due to
the absence of an airplane with no other distinguishable features visible, or for any other
reason, the patch was assigned the other label.

After annotation, the dataset SemanticAircraft consisted of a set of 3854 instances and 13265

quadrants. Every patch in turn consists of the triplet of: RGB input image from either ADE,
COCO or PASCAL, corresponding context vector ci/q obtained with the semantic context mod-
ule from the semantic masks, and GT domain label from the annotation process. As such,
SemanticAircraft consists of two classes of sets of images (Ii and Iq), context vectors (Ci and
Cq) and labels (li and lq) respectively. The model search and learning process took place in two
phases. In the first phase, hyperparameters and architectural designs were tuned following the
evaluation of method-specific metrics, using the training and validation split. Once the optimal
version of a model was found, final evaluation used reshuffled training and test data. To avoid
having strongly similar images in any two of the splits, all instances and quadrants taken from
the same source image are assigned the same split.

Specifically, before training begins in phase-1, both instances and quadrants are split into five
folds each making up twenty-percent of the data. This follows the idea of k-fold cross-validation.
The basic premise behind using k-fold cross-validation is to remove the randomness introduced
when splitting the dataset into training/validation/test arbitrarily. For example, it is possible that
all the "easy" samples happen to end up in the test split, skewing the actual performance of the
model. Folds are introduced to allow evaluation on every example while still keeping training
and test data mutually exclusive per fold. In the beginning 20% were completely excluded and
left untouched during model tuning. From the remaining 80% four "active" folds are created
with mutually-exclusive validation data. This means for fold-1 the first 60% of the entire dataset
are used as training data while 60 − 80% are validation, for fold-2 percentages 20 − 80% are
used for training, 0 − 20% for validation and so forth. The results during model search are all
given using average scores on validation data across all four folds.

For phase-2 two separate versions of SemanticAircraft were used. The first set consists
of all instances and quadrants. For the second set all instances and quadrants with the GT
domain label other are removed. Other patches are not included during training or evaluation
in this case.2 The dataset is shuffled again, split into five equal-sized subsets used to create
five different folds. In this way, every sample is used once for validation/testing and three times
for training. In phase-2 reported results are all averaged across the test-sets of all five folds.

2If one quadrant or instance was assigned other during annotation, only this patch is excluded not all in-
stances/quadrants from that source image.

54

In the following three sections for every method the used algorithm is first described, followed
by model-tuning in phase-1 and final application and evaluation in phase-2.

5.3 Baseline Threshold Model

The algorithm proposed in this section works (almost) deterministically and predicts domains
using context-priors. It is highly parameterized by design and serves as the baseline for domain
prediction evaluation.

5.3.1 Hierarchical Threshold as Domain Prediction Baseline

The basic premise of the baseline was to develop an algorithm that works similar to human
intuition: The quantity of every context-class contributes towards a certain domain-belief with a
set strength if that quantity is "as-expected" for any domain . For example, apron samples are
commonly expected to feature vehicles in the context while runway and sky are not. Observing
individual classes of the context for any patch, e.g. cvehicle = 0.4 means forty percent of pixels
are vehicle, the ranges of expected vehicle context for all three domains are checked and every
domain with bounds including 0.4 gets assigned a score, symbolizing the level of distinction
the context provides. If vehicle is a superclass and context estimates are only available for the
respective sub-classes, the scores of all its individual classes are first added together. This is
done for every superclass with scores adding up until the final domain-scores are reached. The
scores or weights are between [0, 100] and the sum of scores for all superclasses per domain
is 100. For classification, an image patch then has to reach a configurable score-threshold. All
parameters were implement using expert knowledge. This baseline domain-prediction method
is outlined in algorithm 4.

If argmax(·) sees two domains with the same score, the label is assigned at random between
the tied domains. If all domain-scores do not meet the score-requirement (80 by default),
threshold is decreased in steps of 5 until a score exceeds it. This is slightly different than
assigning the highest-scoring domain, and allows collecting information how many times the
threshold was decreased as an uncertainty measure. While simple to configure for first time-
usage, this algorithm shows multiple shortcomings:

• It is incredibly parameter-heavy, making both tuning for a set of domains and extension
to other domains tedious.

• All parameters are partly dependent on expert-knowledge, and need to be informed by
previous dataset-wide semantic context analysis.

• Equal domain-scores lead to ambiguity – in this case, this ambiguity was solved with
random tie-breaks but an alternative could be to allow multi-labels or assign the domain
which met the superclass requirement with the highest weight w. Although the latter al-
ternative would bias towards domains with a less uniform distribution across the weights.

55

Algorithm 4 Predict domains (quasi) deterministically via hierarchical thresholding

Requisites: Set of context vectors Ci/q to predict domains upon. List of n domains d and
for every domain and every superclass s consisting of classes c in that domain a certain
range e.g. rapron,vehicle = [0.0, 0.5] and corresponding weight wapron,vehicle = 20 that the
superclass falls in that range. Finally, a domain-prediction threshold of th for all domains
and possibly a decrease thd.

1: function THRESHOLDDOMAINPREDICTION(Ci/q,D,S,R,W, th, thd)
2: for c in C do
3: domain_scores← 0 : 0 ∈ Rn×1

4: for d in D do
5: for s in S do
6: super_score←

∑
i ci, ∀c ∈ s

7: if super_score ∈ [rd,s,lower, rd,s,upper] then
8: domain_scoresd ← domain_scoresd + wd,s

9: if max(domain_scores) > th then
10: lc ← argmax(domain_scores) . Break ties randomly
11: else
12: th← th− thd . Go-to line 9 until domain found

13: return l . l : vector holding a domain-label for every patch

• Patches not meeting the threshold th signify high uncertainty in the context or out-of-
context patches. Instead of lowering the threshold it might be more advantageous to
discard the patch altogether.

Despite these drawbacks, once set-up for a set of domains and datasets, results are largely
reproducible due to the deterministic nature and inference-time is negligible since the compu-
tational complexity and dimensionality of the context vectors is low, enabling fast tuning of the
parameters.

5.3.2 Parameter Tuning of the Baseline Model

Three different parameter-sets were used during model-tuning – Table 12 shows the sets of
configurations.

As metric for evaluation GT domain labels were used and classification accuracy (recall)
calculated – Table 13 provides the results.3 With configuration-I many patches were wrongly
classified as sky since it is so prevalent as context and the restrictions via ranges were not
strong enough. Therefore, the lower bound of rsky,sky (sky is both a domain and a superclass
occurring in every domain) was raised from 60 to 90, while the upper bounds of sky in the other
domains were raised. This led to definitive improvements in apron and runway, while accuracy

3Because of this inclusion of GT knowledge and subsequent parameter tuning, the application of this algorithm is
not entirely unsupervised in its nature, even if no supervised learning procedure takes place.

56

Table 12: Ranges and weights used for domain prediction using the baseline, during all three configura-
tions. For every domain (column) and every (contextually relevant) superclass of SemanticAir-
craft (rows), the left-hand subcolumn gives the specific range, while the right subcolumn gives
the corresponding weight. Changes to parameters are reflected in the color, with black being
the optimal found value. For example, for the domain other the upper bound of sky-context
was changed from 50 to 60 back to 50 again from configurations I to III.

Apron Runway Sky Other

rapron wapron rrunway wrunway rsky wsky rother wother

Sky [0, (40) 60] (6) 16 [0, (99) 99.5] (25) 20 [(60) 90, 100] 10 [0, (50, 60) 50] (2, 6) 2

Pavement [(8) 3, 100] (25) 18 [0, (50) 60] (5) 3 [0, 0] 15 [0, 25] (3, 6) 3

Building [0, (90) 98] 3 [0, 10] (5) 3 [0, 2] 10 [0, 40] (3, 6) 3

Soil [0, (18) 25] (15) 14 [0, 70] (5) 3 [0, 5] 5 [0, 70] (3, 6) 3

Elevation [0, (2) 5] 3 [0, (25) 35] 3 [0, 65] 1 [0, 65] (3, 6) 3

Plant [0, 1] (11) 10 [0, (85) 95] 3 [0, (15) 10] 1 [0, 85] (3, 6) 3

Person [0, (70) 80] 10 [0, 0.2] 30 [0, 0] 20 [0, 100] (37, 23) 37

Vehicle [0, (40) 50] 3 [0, 5] (10) 16 [0, 0] 15 [0, 60] (3, 6) 3

Waterbody [0, 5] (11) 10 [0, 25] 2 [0, 85] 10 [0, 100] (3, 6) 3

Indoor [0, (5) 10] 3 [0, 0] 2 [0, 0] 1 [0, 100] (37, 23) 37

Object [0, (20) 30] 10 [0, 0] (10) 15 [0, 0] 12 [0, 60] (3, 6) 3

Table 13: Recall of the baseline model during model-tuning. The model performs best on sky – the
simplest of domains in terms of image difficulty. Since sky is also the most frequent domain,
total recall is higher average recall.

Configuration Apron Runway Sky Other Average Total

Instances

I 0.2065 0.3697 0.8893 0.6658 0.5328 0.5358

II 0.3865 0.4489 0.8882 0.5303 0.5635 0.5768

III 0.3751 0.4193 0.8904 0.592 0.5692 0.5825

Quadrants

I 0.4689 0.3145 0.8946 0.5899 0.567 0.633

II 0.5192 0.5156 0.8823 0.4588 0.594 0.6376

III 0.5133 0.4255 0.8807 0.5178 0.5843 0.6423

57

in the other domain dropped off significantly. To remedy this effect, changes to the ranges and
weights of other were reverted, which results in configuration-III.

Following total accuracy, configuration-III is the best variant for both instances and quadrants.
Looking at average accuracy, configuration-III performs best on instances but is outperformed
by configuration-II on quadrants, due to a 9-percent difference in runway prediction. Also,
simply reverting the changes made to the other-parameters for configuration-III was not enough
to restore the strong original performance. Since configuration-III provided the best results in
three out of four metrics it was also used for application on the test set.

5.3.3 Evaluation of the Baseline

As previously outlined, four subsets of SemanticAircraft were created for final evaluation: in-
stances and quadrants with and without the domain other. Every subset has five folds with
training, validation and test splits. The algorithm was applied to all patches and Table 14

shows results as recall, precision and F1 score (harmonic mean of precision and recall), relat-
ing true positive (TP), false positive (FP) and false negative (FN) classifications.4 Additionally,
the standard deviation with bessel’s correction for recall is given.

Table 15 lastly provides the confusion matrices for all four subsets. Additionally, for every
domain the number of patches assigned to that domain (TP+FP) vs. the true number patches
following domain annotation (TP + FN) is visible.

While results obtained with the baseline are reasonably good, the limited nature of the model
due to the strong parameterization significantly restricts its usability. Therefore, it was decided
to proceed with a learning based approach in the form of unsupervised ML models.

4The average F1 score is the arithmetic mean of other F1 scores not the harmonic mean of average precision and
recall.

58

Table 14: Final domain prediction results using the baseline. Classification results improved significantly
when excluding other patches. The difference in accuracy between instances and quadrants
is insignificant. Notable also is the strong precision on apron patches across the board. Low
precision with other samples indicate a significant amount of false-positive assignments to the
other domain during classification. For total measures, precision is equivalent to recall.

Apron Runway Sky Other Average Total

Instances

Including Other

Precision 0.7445 0.4166 0.939 0.3152 0.6039 0.588

Recall 0.382± 0.033 0.425± 0.035 0.89± 0.037 0.579± 0.018 0.569± 0.031 0.588± 0.015

F1 0.5049 0.4208 0.9138 0.4082 0.5619 0.588

Excluding Other

Precision 0.8312 0.5265 0.9849 — 0.7809 0.796

Recall 0.649± 0.025 0.75± 0.033 0.968± 0.013 — 0.789± 0.024 0.796± 0.011

F1 0.7289 0.6187 0.9764 — 0.7747 0.796

Quadrants

Including Other

Precision 0.7248 0.4354 0.8778 0.3727 0.6027 0.639

Recall 0.511± 0.028 0.417± 0.032 0.884± 0.011 0.502± 0.022 0.5785± 0.023 0.639± 0.017

F1 0.5994 0.426 0.8809 0.4278 0.5835 0.639

Excluding Other

Precision 0.8037 0.5584 0.9411 — 0.7677 0.799

Recall 0.632± 0.0224 0.734± 0.0149 0.922± 0.0148 — 0.7627± 0.0174 0.799± 0.006

F1 0.7076 0.6343 0.9315 — 0.7578 0.799

59

Table 15: Confusion matrices for baseline results, showing significant confusion between runway and
other as well as apron and other. Actual labels (rows) are visible on the left vs. predicted
labels (columns). Sky is predicted with the least confusion. In instances, 1399 samples are
assigned other, which is more than any other domain, while only 762 instances were actually
annotated with the other label.

Including Other Excluding Other

Instances

A
pr

on

R
un

w
ay

Sk
y

O
th

er

A
pr

on

R
un

w
ay

Sk
y

Apron 0.382 0.199 0.001 0.418 0.649 0.349 0.002 1207

Runway 0.070 0.425 0.015 0.490 0.228 0.750 0.022 675

Sky 0.001 0.008 0.89 0.101 0.004 0.028 0.968 1210

Other 0.144 0.200 0.077 0.579 762

619 689 1147 1399 942 961 1189

Quadrants

Apron 0.511 0.150 0.024 0.315 0.632 0.327 0.041 2966

Runway 0.098 0.417 0.062 0.423 0.189 0.734 0.077 2351

Sky 0.002 0.045 0.884 0.069 0.002 0.076 0.922 5233

Other 0.124 0.217 0.157 0.502 2715

2089 2251 5268 3657 2333 3091 5126

60

5.4 Unsupervised Clustering and Mixture Models

In this section, the unsupervised ML models applied for the prediction of domains on the sets
of context vectors Ci and Cq are detailed. As a reminder, the dimension for every context vector
c is M = 11, while the number of domains is D = 4. First, the mathematical background
of unsupervised clustering and mixture models is given, largely derived from Bishop [104]. It
should be noted, that any created cluster are an internal mathematical construct and do not
resemble the set of predefined domains. This makes interpretation in a classification setting
not as straightforward as using softmax scores in CNNs. Afterwards, the tuning and application
of the models on SemanticAircraft is given.

5.4.1 Unsupervised Clustering Algorithms and Mixture Models

Chapters 9 and 10 from Bishopet al. [104] provide many details for clustering algorithms,
mixture models, the idea of expectancy maximization (EM) and the extension for variational
methods.

Without the knowledge of GT domain-labels for the context vectors, classification can be
done by finding clusters in the set of data points, where every cluster corresponds to a domain
that generated the observed data. A popular non-probabilistic technique for clustering is the
K-means algorithm [105] creating cluster regions similar to Voronoi diagrams.

Assuming D clusters in the data, a set of M -dimensional vectors µd where d = 1, . . . , D is
a cluster prototype, or the center of cluster d. The goal is to find an assignment of data points
to clusters to minimize the sum-of-squares of (euclidean) distances from data to center points
µd. For every data point c, binary variable rnd ∈ 0, 1 describes which cluster d the vector c is
assigned to (one-hot). This leads to the objective function J which is to be minimized for every
one of N observations:

J =
N∑

n=1

D∑
d=1

rnd | cn − µd |2 (1)

Optimization takes place in two steps, the E (expectation) and M (maximization) steps. First,
rnd is set 1 for the cluster d that gives the minimal | cn − µd |2, i.e. every context vector cn is
assigned to the cluster of the closest cluster center. Then, having chosen rnd, the objective
function J can be minimized using the derivative with respect to µd, giving:

µd =

∑
n rndcn∑
n rnd

(2)

The interpretation of this step is to set µd equal to the mean of all datapoints assigned
cluster d. These steps are repeated until convergence, although K-means is not guaranteed
to converge to a global optimum.

Taking a probabilistic approach, in simple terms, a Gaussian mixture models (GMM) is a
probabilistic model that assumes all data-points were generated from a finite mixture of Gaus-
sians with unknown parameters. It can be seen as a way of generalizing K-means clustering
by incorporating information about the covariance structure of the data. As Bishop [104] write,

61

the Gaussian mixture distribution can be written as linear superposition of d Gaussians with
mixing coefficients πd:

p(c) =
D∑

d=1

πdN (c | µd,Σd) (3)

Introducing aD-dimensional binary (latent) variable z with all the properties for a well-defined
marginal probability p(z), the conditional γ(zd) := p(zd = 1 | c) is known as the "responsibility"
that component d takes towards explaining the observation c. This responsibility plays an
important role in the expectation step: using the log likelihood of posterior observations, the
steps of EM for Gaussian mixtures are generally as follows:

1. Initialize the means µd, often times with a preliminary run of K-means, covariances Σd

and mixing coefficients πd.

2. Expectation: Evaluate responsibilities γ(zd) using observations c and current parameters.

3. Maximization: Update µd, Σd and mixing coefficients πd using the responsibilities γ(zd).

4. Evaluate the log likelihood of the model and repeat steps 2-4 until convergence criterion
is satisfied.

As Blei et al. [106] point out, for variational reasoning, if any unknown parameters in the
probabilistic model are given prior distributions, these parameters can be absorbed into the
set of latent variables z, resulting in a fully Bayesian model. Given infinite computation time,
they promise to find a global optimum for the parameters of the distributions that generated
observations c. As Bishop [104] write, approximation schemes are often required due to ana-
lytic intractability or prohibitively expensive calculation. Variational inference (VI) or variational
Bayes is such an approximation technique which has been widely applied [107]. At this point
it should be noted, that VI in this classical Bayesian interpretation is largely intractable for any
high-dimensional problem, prohibiting the application on images directly, which are oftentimes
10-s of thousands or millions-dimensional. The representation in the form of 11-dimensional
context vectors makes this problem tractable with VI.5 For the scope of this work, it suffices
to say, that all model parameters are absorbed in the set of latent variables z. As Blei et al.
[106] write, when postulating a family of densities Q the problem of optimization becomes one
of minimizing the Kullback-Leibler (KL) divergence.

q∗(z) = argmin
q(z∈Q)

KL(q(z) | p(z | c)) (4)

The posterior q(z) is then approximated with the optimized member of the family q∗(·). This
approximation is typically done using the evidence lower bound. The latent variable from z

describing the probability of the observation belonging to any of the D domains is categori-
cally distributed. In Bayesian settings, if the posterior and prior belong to the same probability

5From sparse Gaussian processes (GP) [108] to Bayesian GP latent variable models (LVM) [109] to finally deep
Gaussian processes (DGP) [110], DGP are one way of merging DL capabilities of processing high-dimensional
data while keeping variational/Bayesian reasoning intact.

62

distribution family, the distributions are conjugate and the prior is a conjugate prior. A conju-
gate prior is an algebraic convenience allowing closed-form expression of the posterior. The
Dirichlet distribution is a conjugate prior to the categorical, and thus, for variational Bayesian
gaussian mixture models (VBGMM) the prior distribution type is typically Dirichlet. Finally, for
infinite non-parametric discrete distributions, the Dirichlet process is the conjugate prior. For
an introduction to Dirichlet processes see [111].

Lastly, to compare the performance of K-means, GMMs and VBGMMs, different metrics
provided by [112] were used. In a probabilistic setting and for selection among a finite set of
models, the Bayesian information criterion (BIC) is commonly used, which maximizes likelihood
while introducing a penalty term for high numbers of model parameters to prevent overfitting.
BIC cannot be formulated for K-means, due to the non-probabilistic nature of the algorithm,
or VBGMM due to the infinite set of possible models. Another common metric which works
with the clusters explicitly was instead used, an extension of the silhouette score [113], the
silhouette coefficient [114]. The silhouette score is a measure of how similar a data-point is
to its own cluster compared to other clusters. It is bound by [−1, 1] where 1 marks perfect
cluster assignment, 0 symbolizes overlapping clusters and −1 is the worst possible "inverse"
assignment. Silhouette score is calculated with any distance metric and is calculated for every
data-point, although the selection of distance metric, by default euclidean, is not straightfor-
ward, since distance metrics behave differently in higher dimensions [115]. The mean of all
the silhouette-scores over a cluster is then proportional to the tightness of all grouped points in
that cluster. Kaufman et al. [114] then introduced the silhouette coefficient, as the maximum
of the means of individual silhouette scores across the entire dataset.

Before model setup, principal component analysis (PCA) was used to obtain the covariance
ratio of every feature of the training data as a preliminary step.6 The covariance ratio in every
component following PCA using all eigenvectors was obtained across the four folds in phase-1
and can be observed in Table 16. Singular values of the specific eigenvectors are omitted, they
ranged from 124 for the first component to 5.579× 10−4 for the last, with a similar distribution
characteristic as the covariance ratios, i.e. singular values were significantly less for the last
1 or 2 components (after standardization). The PCA-analysis was done both before and after
standardization. Following direct observations, it appears that 1.) every component except one
(presumably indoor) contributes to significant extent, 2) the difference between the covariance
Σ of training vs validation set is negligible, in other words training and validation data were
drawn (almost) i.i.d., 3) standardization significantly effects the covariance-ratios, bringing the
significance of multiple features to light which would otherwise be lost due to differences in
the relative scales of the features, in particular context being shadowed by sky. Since almost
all context features hold relevance in terms of covariance, PCA was not used for the sake
of dimensionality reduction in the following experiments. As a reminder, the semantic context
module always already normalizes per-class context with the pixel-sum – context is further also
always scaled between [0, 1].

6T-distributed stochastic neighborhood embedding (t-SNE) was also shortly experimented with, although results
proved more unstable, presumably due to the strong sparsity of most context vectors [116].

63

Table 16: Covariance ratio in all principal components following PCA of SemanticAircraft. Before stan-
dardization, it appears one component is dominating the covariance (presumably sky). With
standardized data, the covariance is much more evenly spread. The last component, which is
presumed to be indoor and almost entirely removed from the context, holds very little covari-
ance.

Instances Quadrants

Training Validation Training Validation

— Stand. — Stand. — Stand. — Stand.

0.6237 0.1810 0.6307 0.1855 0.6237 0.1776 0.6307 0.1757

0.1595 0.1155 0.1612 0.1211 0.1595 0.1091 0.1615 0.1111

0.0725 0.1065 0.0681 0.1007 0.0725 0.098 0.0681 0.0971

0.0419 0.0952 0.0436 0.0999 0.0419 0.0944 0.0436 0.0961

0.0412 0.0919 0.0332 0.0934 0.0412 0.0928 0.0332 0.093

0.0319 0.0906 0.0264 0.0893 0.0319 0.091 0.0264 0.0911

0.0129 0.087 0.0166 0.087 0.0129 0.0877 0.0166 0.0889

0.0095 0.0826 0.0133 0.0767 0.0095 0.0867 0.0133 0.0872

0.0069 0.0763 0.0071 0.074 0.0069 0.0858 0.0071 0.084

2.4× 10−7 0.0735 4.5× 10−7 0.0724 2.4× 10−7 0.0771 4.5× 10−7 0.0757

2.8× 10−10 7.4× 10−10 2.8× 10−10 7.7× 10−10 2.8× 10−10 2.8× 10−10 2.8× 10−10 2.8× 10−10

5.4.2 Model Search of Unsupervised Models

For unsupervised prediction a K-means, a GMM and a VBGMM were fit on the context vectors
and used to infer domains for unseen context samples. The scikit-learn toolbox was used
for implementation [112]. A number of other clustering algorithm are implemented in scikit –
unfortunately, all of these models can only fit and predict on the same set of samples, i.e. a
learning procedure using training, validation and test splits separately is not possible. It was
therefore decided to not explore these algorithms.

While optimization of the parameters in the probabilistic models follows the EM scheme, the
numerous hyperparameters of any of the models were tuned using grid-search methodology.
Since models are fit individually on every fold, optimal hyperparameters can differ from fold to
fold. In this case, the most common value or category for any hyperparameter was chosen. If
this was not possible, the average was instead used. Also, the random state was fixed to 42

across all experiments for fair comparison and to allow reproducibility.
A number of methods exist for obtaining the "natural" number K of clusters within a dataset –

information about the true nature of distributions might get lost when forcing a certain number
of clusters. One such approach for any clustering algorithm is to use silhouette plots and
means. Nevertheless, since unsupervised models’ performance for domain prediction will be
evaluated against both baseline and CNN models in a classification setting using GT label

64

information, it was decided to fix the number of clusters to be equal to the number of domains,
both during phase-1 and phase-2.

K-Means Clustering

For the K-means model, the only tuned hyperparameter was the method of initialization. For
configuration-I, the initialization method was set to k − means + + [117]. Alternatively, the
cluster centers can be defined explicitly. It was considered to include the dataset-wide con-
text statistics, either from ADE, COCO and PASCAL or SemanticAircraft to this end but using
the dataset specific context averages as cluster-centers would lead the model to believe the
various clusters symbolize different datasets, instead of domains. Incorporating the mean of
context across the domains instead of datasets on the other hand would incorporate super-
vised information. For configuration-II of K-Means, it was instead experimented with using
best-guesses for cluster-centers of every class and per domain, an idea similar to the ranges
used in the baseline for thresholding. In this case, the number of runs defined by n − init

was forceably set to 1 since initialization parameters were passed explicitly. The initialization
matrices used in configuration-II can be observed in Figure 10.

S
ky

P
av

em
en

t

B
ui

ld
in

g

S
oi

l

E
le

va
tio

n

P
la

nt

Pe
rs

on

Ve
hi

cl
e

W
at

er
bo

dy

O
bj

ec
t

In
do

or




Apron 0.4 0.2 0.05 0.05 0.01 0.01 0.08 0.05 0.01 0.02 0.01

Runway 0.6 0.2 0.01 0.15 0.03 0.05 0.01 0.01 0.01 0.01 0.01

Sky 0.92 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.03 0.01 0.01

Other 0.5 0.1 0.1 0.05 0.03 0.03 0.01 0.05 0.05 0.01 0.01

(a) Initialization matrix for means (cluster-centers) of instances during K-means clustering.

S
ky

P
av

em
en

t

B
ui

ld
in

g

S
oi

l

E
le

va
tio

n

P
la

nt

Pe
rs

on

Ve
hi

cl
e

W
at

er
bo

dy

O
bj

ec
t

In
do

or




Apron 0.3 0.4 0.1 0.01 0.01 0.01 0.05 0.05 0.01 0.02 0.01

Runway 0.65 0.25 0.01 0.2 0.03 0.05 0.01 0.01 0.01 0.01 0.01

Sky 0.98 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Other 0.5 0.1 0.1 0.05 0.03 0.03 0.1 0.05 0.05 0.01 0.01

(b) Initialization matrix for means (cluster-centers) of quadrants.

Figure 10: For the K-means model it was attempted to set explicit cluster centers, using best-guess
values derived from semantic context analysis. For every domain (row), an estimate was
made regarding the average amount of context observed in that domain for every class
(column).

65

Furthermore, every configuration was applied using either the context vectors C directly, or
the data-matrix was first whitened via PCA-whitening [118], using the eigen-system of Σ ob-
tained during PCA (although PCA was not used for dimensionality reduction). Other parame-
ters for the K-means model are the number of times the algorithm is run with different centroid
seeds: n− init = 30 – the maximum number of iterations during a single run: max− iter = 300

– and the relative tolerance regarding the (Frobenius norm of) cluster center difference in two
consecutive runs: tol = 0.0001 . In a final run max − iter was raised from 300 to 1000. Ob-
served silhouette results where the same, implying convergence into the tolerance boundary
was achieved during 300 iterations already.

The best performing K-means model in terms of silhouette coefficient for both instances
and quadrants used both standardization followed by PCA-whitening for data preprocessing
and initialized the centroid seeds using k −means++. Achieved silhouette-coefficients were
0.4895 and 0.5173 for instances and quadrants respectively, meaning cluster-tightness was
slightly more difficult to achieve with instances than quadrants.

Gaussian Mixture Models

For the GMMs, data-preprocessing steps again included the possibility of standardizing and/or
whitening the data. The tuned hyperparameters were: 1) the initialization method for the means
µ and covariances Σ of the Gaussians, using either random parameters or centers from a pre-
liminary K-means run for the means and 2) the covariance-type, which can be either spherical,
diagonal, tied or full.

Two experiments were conducted with either no preprocessing of the data, or standard-
ization and whitening. In both attempts the optimal hyperparameters are those, where the
silhouette-coefficient is at a maximum. The results and corresponding hyperparameters can
be observed in Table 17. For a small number of sub experiments BIC was also recorded. While
optimal hyperparameters differed, BIC and silhouette-coefficient itself correlated positively, i.e.
a change in hyperparameters that caused an improvement (decrease) in BIC also caused and
improvement (increase) of the silhouette coefficient.

To summarize, the best performing GMM could be obtained by first standardizing and
whitening the data, using K-means for parameter initialization and employing tied covariance-
matrices with silhouette-coefficients of 0.698 and 0.758 for instances and quadrants respec-
tively, an improvement from 0.4895 and 0.5173 achieved with basic K-means.

Variational Bayesian Gaussian Mixture Models

For the final model, the VBGMM implementation from scikit-learn was used. It should be noted,
that one advantage of variational methods is the non-requirement of a a pre-defined number
of clusters – this is desirable in a truly unsupervised setting with next to no knowledge about
the type and number of distributions that generated the data. In that context, letting the model
decide the number of clusters yields clustering closer to the actual underlying distributions,
without "hiding" information by forcing data-points to any fixed cluster. Here the number of
clusters is known, or at least assumed to be equal to the number of domains. Experiments with

66

Table 17: Optimal hyperparameters according to the silhouette coefficients of GMMs fit on SemanticAir-
craft for domain prediction. A grid search was run to find the best combination of initialization
and covariance type with respective data pre-processing. For all models it was discovered
that the initialization of Gaussian means using K-means cluster centers improved the perfor-
mance. The best performing models according to the observed silhouette coefficients also
used either diagonal or tied covariance matrices, instead of a full covariance matrix. This
is perhaps surprising, although Pedregosa et al. [112] argue, that mixture models with full
covariance are prone to overfitting, since the mixture components can take any shape and
location of distributions. Data pre-processing in the form of standardization and whitening
provided similarly positive results.

Initialization Covariance Standardization Whitening Silhouette

I Instances k-means diagonal F F 0.645

Quadrants tied 0.545

II Instances T T 0.698

Quadrants 0.758

not setting the number of active components were conducted but since any number of clusters
might be created, no evaluation against baseline or CNNs with four fixed domains would be
possible. To be exact, the number of effective components can be inferred from the data, and
this was done for configurations-I to III, setting the maximum number of components to 15

and letting the model itself decide what mixture components to activate. For configurations-IV
onward the number of components is fixed at 4 – observation has shown that the VBGMM
always activated those four components.

In addition to the hyperparameters of the GMMs, the prior on the weight-concentration of the
Dirichlet distributions, in literature referred to as γ was also tuned. The values of γ could range
from 10× 10−5 to 10× 105: large γ puts more mass in the center of a distribution resulting in
more components being active, while smaller γ puts more mass at the edges. Priors on the
covariance degrees of freedom and for the distribution on covariance itself are given using the
Wishart distribution. For the initialization of the means and covariances of the responsibilities
either K-means or random initialization can be employed, similar to the GMMs. For every
run of the model, five different initializations were performed and the result with the highest
lower bound on the likelihood kept. For the Dirichlet-process, which can be understood as
a distribution whose range is itself a set of distributions, the stick-breaking representation is
used to obtain a finite model. In terms of data-preprocessing, for every run the data can be
either standardized, standardized and whitened or neither. The recorded hyperparameters at
maximum silhouette-coefficients and the silhouette-coefficients themselves can be observed
in Table 18. During configurations-I through III, the model itself chose the number of mixture
components to activate. It was observed, that for instances up to 13 components were active
and up to 9 for quadrants. This points towards the fact that the number of domains (4) might be
too strong a restriction for the data. A number of other clusters/subdomains can be attributed

67

significant responsibility for creating the context, and besides the inclusion of the domains
taxiway and TOL a few other subdomains seem to exist in SemanticAircraft.

The highest recorded silhouette-coefficient for instances was obtained with configuration-VI
and a Dirichlet distribution prior. For quadrants, the highest value was actually obtained by
letting the model decide on the number of active components, 9 were activated in this case.
Since this would lead to domain prediction across 9 domains, but all other models (baseline
and CNN) are restricted to 4, the second highest scoring configuration for test-set evaluation
was instead used, a Dirichlet process prior in configuration-VI. Thus, the achieved coefficients
are 0.702 and 0.766 for instances and quadrants respectively, just barely outperforming the
non-variational GMM with coefficients 0.698 and 0.758

5.4.3 Evaluating the Mixture Model for Domain Prediction

For testing purposes, the maximum number of EM iterations to perform was raised to 500

to ensure convergence. Once the model was fit on the training data one final caveat was
necessary to evaluate this clustering algorithm in a classification sense. Since clusters are
mathematical constructs of data points, context vectors in this case, and not direct represen-
tations of domains, to obtain classification accuracy (recall), the best-performing permutation
of possible cluster-assignments had to be found. This was done by expressing the confusion
matrix across clusters as a cost matrix and obtaining the minimization over all permutations of
possible row/column combinations [119], 4! when including other, 3! otherwise. This yields the
permutation of the confusion matrix with the highest diagonal sum (total recall). Some sample
images from the assigned clusters were drawn – the cluster resembling the sky domain was
clearly noticeable, confusion between apron, runway and other exists, making the samples
largely indistinguishable. The final results can be observed in Table 19.

Table 19: Final results of the application of unsupervised models, specifically a VBGMM, for domain
prediction. It should be noted, that this obtained recall from permutations is the total recall, that
is TotalRecall = TP

TP+FN across the entire dataset, which is always higher (or at least equal)
than average recall due to class-imbalance. In SemanticAircraft this is particularly relevant,
since the largest number of patches stem from the easiest domain, sky. The deviation is
again provided, since the test data is split across five separate folds.

Instances Quadrants

Including Other Excluding Other Including Other Excluding Other

0.586± 0.048 0.712± 0.06 0.539± 0.029 0.637± 0.083

Having concluded the experiments using unsupervised algorithms, the next section will use
the manually annotated GT domain-labels to train a supervised model: a CNN for domain
prediction in the sense of image-classification.

68

Table 18: This table shows the the tuning and model-search process of the VBGMM.

- Components Initialization Covariance Stand. Whitening γ Silhouette

Instances

Dirichlet distribution

I 15 k-means tied F F 103 0.468

II T 2778 0.459

III random spherical T 1 0.671

IV 4 k-means tied F F 10−5 0.446

V T 1 0.398

V I T 104 0.702

Dirichlet process

I 15 k-means spherical F F 10−5 0.468

II random tied T 27503 0.457

III spherical T 27750 0.685

IV 4 k-means F F 10−5 0.44

V random T 10−5 0.397

V I k-means T 10−5 0.698

Quadrants

Dirichlet distribution

I 15 random tied F F 10−5 0.66

II k-means T 278 0.66

III random T 10 0.778

IV 4 k-means tied F F 10−5 0.667

V random T 103 0.518

V I k-means T 105 0.744

Dirichlet process

I 15 random tied F F 10−5 0.653

II k-means T 10−5 0.66

III random T 37000 0.765

IV 4 k-means tied F F 10−5 0.667

V random T 10−5 0.514

V I k-means T 10−5 0.766

69

5.5 Supervised Convolutional Neural Networks

For the CNN, not the set of context vectors Ic and Qc are used as input data, but instead the
images IRGB /QRGB and corresponding class-labels Il /Ql obtained from domain annotation.

5.5.1 Convolutional Neural Networks for Classification

For implementation of the different models PyTorch was used, particularly TorchParallel. All
models were loaded onto the graphical processing units (GPU) where training takes place.
Three GTX-2080TIs with 12GB RAM each were available although the models are much
smaller which allowed training in multiple configurations at a time, significantly speeding up
the hyperparameter tuning process. While significantly dependent on input and model size, on
average training one epoch took approximately two minutes for instances and ten minutes for
quadrants. During phase-1, the model-tuning, validation took place after every training epoch.
During final application in phase-2, a total of ten validation steps were done.

The loss function in all models is cross-entropy loss. Regarding parameter initialization, most
notably the weights in convolutional layers, according to Dellinger et al. [120] for all deep neural
networks using asymmetric non-linear activation functions, Kaiming [121] weight initialization
performs better, in the sense that gradients do not vanish nearly as fast, than Xavier [122].
While symmetric activation functions such as sigmoid(·) and tanh(·) were commonly used in
the beginning of CNNs, rectified linear unit (ReLU)-type functions are now the norm. All models
trained in this work use ReLU activation functions and Kaiming-uniform weight initialization.
Bias neurons are initialized with 0s while weights and biases in batch-normalization layers are
initialized with 1s and 0s respectively [123].

Almost all models use adaptive average pooling right before the fully connected (FC) layer
to stay agnostic to different input sizes. The pooled area increases with input size, resulting
in constant output size after pooling. Input images are still required to be squared for most
architectures to function properly. This is somewhat troublesome for the airplane instances
IRGB due to their aspect ratio. Therefore, among other preprocessing steps, input patches
were often resized using cubic interpolation (4× 4 neighborhood).

On the topic of image augmentation, Shorten et al. [124] provide a survey of common
techniques used for DL, Mikołajczyk et al. [125] highlight techniques particularly useful for
image classification. The image augmentation library of Jung et al. [126] is used in this work
for some augmentation techniques. As the next section will show, models tend to overfit on
the training split of SemanticAircraft, resulting in suboptimal performance on the validation and
test data. One method generally accepted to reduce overfitting is to use stronger augmentation
techniques. This creates larger variance in the input data, making it harder for the model to fit
its parameters perfectly. Three strengths of image augmentation were used in this work, each
consisting of a number of different augmentation techniques:

Light image augmentation includes some of the most commonly used techniques

• HorizontalFlip(0.5), i.e. every patch has a fifty-percent chance of being flipped hori-
zontally

70

• Resize(x × x), resizes the input patch to be x × x, where x is a power of 2 and set
to 256 for the experiments7

Medium strength augmentations include affine transformations

• Crop(·) to crop some patches mostly in width followed by

• HorizontalFlip(0.5)

• AdditiveGaussianNoise(scale = 0.05 ∗ 255) is used to add some noise followed by

• Affine(rotate = (−5, 5)), a slight affine rotation in the range [−5, 5]

Strong augmentation includes all of the above mentioned techniques. In addition it was ex-
perimented with

• MotionBlur(·) to simulate fast moving objects

• LinearContrast(·) to change the contrast in images

• Translate(·) as a different affine transformation

• GaussianBlur(·) which adds blur following normal distributions

• Scale(·) as an alternative to Resize(·) in combination with

• Padding(·) to pad the image borders with set values and

• Dropout(·) of pixels with different levels of granularity

All augmentation techniques are applied only on the training set. Patches from the validation
and test-splits are only resized to meet the input requirements. Data from any split is further
standardized by substracting the per-channel mean from all pixels of the training set, followed
by division with the standard deviation.

5.5.2 Searching and Tuning Applicable Neural Networks

While advanced techniques for visual explanations of deep networks exist [11], for hyperpa-
rameter tuning of CNNs it often suffices to observe the loss and accuracy recorded during
training and validation. One such graph can be observed in Figure 11. The plot was obtained
using one of the applied networks – the ResNet50 [127] architecture – on fold-1 of instances.

Observing this plot in particular a few things are immediately noticeable: The model achieves
almost 100% training accuracy during the last epoch, which is a strong indication that the model
is unnecessarily powerful for the comparatively simple task. The model also overfits, and does
so very early on, which can be observed from the gap between training and validation accuracy.
The loss shows the convergence of the model, consistently dropping up until epoch 24. From
epoch 30 to 31 a significant step in training accuracy can be observed, this coincides with the
reduction of the learning rate at epoch 30. The optimizer does not get stuck in a local minima,
or at least the minima it convergences to is not far above the global minima.

Following these results, multiple methods were employed to combat the noticeable overfit-
ting:

7There is no requirement for patches to have power-of-2 width/height, but it does lead to faster performance due
to the architectural design of the processing hardware.

71

Figure 11: Plot showing the training and validation accuracy, as well as the training-loss during tuning
of the ResNet50 model in configuration-I. A number of things can be observed at a glace, for
example the fact that the model is overfitting on the training data.

Model-size
The model size was reduced by changing the architecture to that of ResNet34, ResNet18
and various Dilated Residual Networks (DRN) [128] and MobileNet [129] architectures.
Even SqueezeNet [130] was briefly experimented with, although this did not converge. It
could be observed, that simply exchanging the model and reducing the model size while
keeping all other parameters fixed proved successful in alleviating overfitting.

Image-augmentation
Various strengths of image-augmentation were applied to create artificial variance in the
input data. Stronger augmentations generally led to worse performance across all mod-
els in this experiment. While this may seem unintuitive, it is difficult to draw the line where
augmentation of images becomes too strong.

Batch-size
Reducing the batch-size leads to an increased number of backpropagation steps over
smaller data-subsets which makes it harder for parameters to overfit on the data points.
While reducing batch-size does mean prolonged training time, it did provide slight perfor-
mance improvements.

Dropout

72

A common regularization technique on an architectural level is to use dropout layers.
None of the CNN architecture originally used dropout, so a layer had to be added to the
best-performing (ResNet) models. Using dropout improved performance slightly.

Two different optimizers were employed for ResNet50: Adam [131] and stochastic gradient
descent (SGD) with Nesterov momentum [132] of 0.9. It was observed that they converge to
the same minimum, although Adam does so significantly faster. Besides the augmentation
strength, batch-size and dropout, the learning rate (LR) was also changed occasionally. The
learning rate significantly impacts the learning process: if it is set too high, learning plateaus
after a few epochs, while a rate set too low leads to very slow, if any, convergence. With
the Adam optimizer the concept of learning rate works differently compared to other common
optimizers [44]: Adam keeps a specific learning rate for every single model parameter which
allows it to handle sparse gradients. Nevertheless, a global learning rate can be set which acts
as the upper-bound for all local, parameter-specific learning rates. For decay of the learning
rate, a simple step-decay was implemented that multiplies the rate by a factor of 0.1 every 30

epochs. The number of training epochs was 35 for almost all models, meaning one learning
rate decay took place right before the end. Weight decay or L2-regularization was set to 0.0.

To obtain accuracy results, the total validation accuracies across the last five epochs and all
four folds were averaged. Table 20 shows the process of finding the best performing model for
both instances and quadrants of SemanticAircraft using the total recall as metric.

The best performing models on both instances and quadrants are ResNet18 variants. For
both models, only light image-augmentation yielded the best results. A key difference between
the models is the presence of dropout for the quadrants model. A probability of 0.5 led to find
the best performing model on quadrants. The plots recorded during training on the first of the
phase-1 folds for both models respectively can be observed in Figure 12. The full collection of
accuracy-loss plots can be found in Appendix C.

5.5.3 Evaluation of the ResNet18 Model

For the final evaluation of the ResNet18 models in phase-2, the CNNs were trained with above
mentioned parameters for 35 and 150 epochs on every fold of the instances and quadrants
respectively. Once training concluded, the models were applied on the test data once and
the per-class and total accuracy recorded and averaged across the folds. The results can be
observed in Table 21. For more detailed per-class prediction results, Table 22 provides the four
normalized confusion matrices.

73

Table 20: Parameter search of the supervised models. Multiple architectures, image-augmentation
techniques and other hyperparameters were applied and tuned. To combat the problem of
overfitting, reducing model size and adding a dropout layer proved successful. The last col-
umn gives the total recall for instances I and quadrants Q respectively.

Augmentation Batch-size Dropout LR Epochs Total Recall

ResNet50 I Q

I light 128 0.0 0.001 35 0.7 0.694

II medium 0.68 0.67

III light 0.0005 0.666 0.686

ResNet18

I light 128 0.0 0.001 35 0.728 0.704

II medium 0.695 0.677

III light 0.0005 0.673 0.694

IV 16 0.001 0.73 0.685

V 0.2 0.702 0.679

V I 0.5 70 0.722 0.718

ResNet34

I light 16 0.0 0.001 35 0.679 0.657

MobileNetV2

I light 16 0.0 0.001 35 0.658 0.639

II strong 0.528 0.552

DRN-C26

I light 32 0.0 0.001 35 0.683 0.684

II 16 0.695 0.670

DRN-D38

I light 16 0.0 0.001 35 0.682 0.680

74

(a) Training accuracy and loss as well as validation accuracy of the model best performing on instances for domain
prediction, ResNet18 in configuration-I. While overfitting is still present, a strong validation accuracy of 72.8%
could be achieved.

(b) Accuracy-loss plot for the model best performing on quadrants, ResNet18 in configuration-VI. Due to the manual
inclusion of a dropout-layer, the model no longer achieves 100% training accuracy and overfitting was signifi-
cantly reduced. A step in the loss is noticeable after adjusting the learning rate in epoch 30.

Figure 12: Accuracy-loss plots for the best performing models on instances and quadrants. Plots were
captured during model-tuning.

75

Table 21: Final results of the ResNet18 models trained for domain prediction on SemanticAircraft. No-
table is the significant increase across all metrics when excluding other images, as well as the
difference of 3 to 5 percent between average and total accuracy, due to the many "easy" sky
patches. Prediction of quadrants was slightly less accurate, presumably due to the annotation
difficulties.

Apron Runway Sky Other Average Total

Instances

Including Other

Precision 0.6725 0.6158 0.93 0.535 0.6883 0.716

Recall 0.669± 0.046 0.622± 0.029 0.945± 0.035 0.517± 0.041 0.688± 0.038 0.716± 0.015

F1 0.6708 0.6189 0.9374 0.5259 0.6883 0.716

Excluding Other

Precision 0.8335 0.6833 0.9694 — 0.8287 0.853

Recall 0.829± 0.045 0.69± 0.058 0.969± 0.019 — 0.829± 0.041 0.853± 0.011

F1 0.8312 0.6865 0.9692 — 0.829 0.853

Quadrants

Including Other

Precision 0.6553 0.5421 0.8587 0.5358 0.648 0.692

Recall 0.556± 0.027 0.608± 0.017 0.893± 0.019 0.527± 0.033 0.646± 0.096 0.692± 0.013

F1 0.6016 0.5732 0.8755 0.5314 0.6454 0.692

Excluding Other

Precision 0.8037 0.5584 0.9411 — 0.7677 0.778

Recall 0.711± 0.022 0.686± 0.013 0.938± 0.01 — 0.778± 0.015 0.778± 0.006

F1 0.7545 0.6157 0.9396 — 0.7699 0.778

To summarize, the trained CNNs were capable of predicting domains with fairly high accu-
racy. The results are in line with previous expectations, showing mild confusion between apron
and runway, strong performance on sky patches, and other images proving somewhat trou-
blesome. The problem of model overfitting could be addressed to some extent be reducing
model-size, batch-size and adding a dropout layer to the architectures. With hyperparameter
tuning and application of the models concluded, they can now be directly compared against
another.

76

Table 22: Confusion matrices following CNN-based domain prediction. Noticeable is the confusion be-
tween apron and other patches, particularly for the instances. Prediction of the sky domain
was again the most accurate. When excluding other, the expected confusion between apron
and runway comes to light.

Including Other Excluding Other

Instances

A
pr

on

R
un

w
ay

Sk
y

O
th

er

A
pr

on

R
un

w
ay

Sk
y

Apron 0.669 0.14 0.005 0.186 0.829 0.162 0.008 1207

Runway 0.231 0.622 0.034 0.113 0.27 0.69 0.04 675

Sky 0.007 0.013 0.945 0.035 0.015 0.017 0.969 1210

Other 0.301 0.101 0.081 0.517 762

1200 682 1230 737 1201 682 1209

Quadrants

Apron 0.556 0.193 0.047 0.205 0.711 0.209 0.08 2966

Runway 0.162 0.608 0.077 0.153 0.194 0.686 0.12 2351

Sky 0.015 0.04 0.893 0.052 0.025 0.037 0.938 5233

Other 0.149 0.158 0.165 0.527 2715

2515 2638 5441 2671 2698 2425 5427

77

6 Results and Discussion of Domain Prediction
Models

For direct comparison of the three models, the total recall is used since this is the only metric
obtained with the VBGMM. Table 23 shows this comparison.

Table 23: Total recall of all three models predicting domains of airplane instances and quadrants from
SemanticAircraft. The CNN shows strong classification results and performs the best across
all metrics except quadrants when excluding other samples. The second most accurate model
has proven to be the threshold algorithm baseline followed by the unsupervised VBGMM.

Instances Quadrants

Including Other Excluding Other Including Other Excluding Other

Baseline 0.588± 0.015 0.796± 0.011 0.639± 0.017 0.799± 0.006

VBGMM 0.586± 0.048 0.712± 0.06 0.539± 0.029 0.637± 0.083

ResNet18 0.716± 0.015 0.854± 0.011 0.692± 0.013 0.778± 0.006

While the CNN has given the best prediction performance, the requirement of annotations
for the domains are a significant drawback, limiting its further application. For the baseline,
the meticulous parameterization makes tuning and extension to other domains very difficult.
Significant effort would be required to apply the model to other domains. While the VBGMM
performs the worst in terms of prediction accuracy, the insights the model can provide into the
dataset structure, hinting at possible other subdomains besides apron, runway, sky and other,
are noteworthy. In short, all three models have benefits and drawbacks but for the explicit task
of domain prediction, the supervised CNN performed the best. Both the baseline and CNN
require domain annotation but are in turn the most accurate models. The highly parameterized
nature of the baseline makes it both tedious to set-up and tune, and extension to new domains
incorporating new (super-)classes is cumbersome. Nevertheless, it does perform well in this
setting with a limited number of domains and superclasses. Unsupervised models’ classifica-
tion is the most variant, this is due to the general premise of GMMs but also the permutation
taking place to allow accuracy interpretation. One possibility to improve clustering performance
might be the usage of evidence ensembles, where clustering is based on evidence from the
co-association matrix [133]. With quadrants the annotation procedure was the most trouble-
some, this is reflected in unsupervised model’s performance, while CNNs are large enough to
encompass these faults. The exclusion of any samples belonging to other does improve all
model’s performance, most significantly the baseline.

78

One final note about the unsupervised learning methods: the poor classification performance
compared to the supervised CNNs was to be expected. The neural network is very capable of
memorizing the feature representations from the images and using its trained parameters for
classification of unseen samples and achieves high domain prediction accuracies in this way.
The purpose of unsupervised algorithms goes beyond simple classification, since the models
yield a cluster structure mathematically derived free of the constraints imposed via the limited
set of domains, apron, runway, sky and other. The clusters might in fact not at all resemble
the set of domains defined in this application. Individual samples within a cluster correlate
in the sense that the context distributions are similar but the patterns found in the semantic
context statistics might show a multitude of further domains [134], or perhaps the concept of
visual domains is not appropriate to describe the clusters altogether. Therefore, the resulting
clusters themselves are of more interest than achieved domain prediction accuracies. One
straightforward way to gain a slight understanding of the kind of clusters created is to observe
the images corresponding to the context vectors in every cluster. Having done so, almost all
unsupervised models use one or two clusters to capture sky-like images with overwhelmingly
sky context, which is a significant portion of the samples in SemanticAircraft. Other clusters
feature images mixed across the domains apron and runway. This confusion can be a result
of multiple factors and is most likely a combination thereof:

• The distinction is more noticeable in images due to differences in lighting, scene structure
or other features not captured via context

• The set of labels in SemanticAircraft is incomplete and more distinct classes are neces-
sary

• The transition between the two domains is so ambiguous it can only be learned with a
CNN

• Apron vs. runway is not an appropriate distinction to make

• The domain annotation procedure itself used the images as basis and not the context
statistics

Lastly, in all experiments with clustering algorithms, if the number of clusters was not spec-
ified as it was the case in some VBGMM experiments, more than three or four clusters were
created. Finding the optimal (according to some criterion) number of clusters with unsuper-
vised learning is a non-trivial task, using metrics such as silhouette-scores - the preliminary
definition of domains made this a non-requirement. The results indicate, that the limitation to
apron, runway and sky was perhaps too strict. In future work, further analysis with clustering
algorithms could provide important insights.

To conclude the domain prediction procedure and provide visual results, Figures 13 and 14

lastly show a set of randomly selected, classified instances and quadrants from SemanticAir-
craft for every domain. Patches that were classified incorrectly by any of the three models are
outlined with a red border.

Images from instances and quadrants look decidedly different: Samples from the former
appear much more cluttered and tend to feature the airplane in the center, while quadrants all

79

(a) Apron instances: The bottom left corner shows an airplane in a rural environment where apron and runway
coincide – all models were able to correctly predict the domain.

(b) Runway instances: Many images were confused and assigned to the apron domain instead.

(c) Sky instances: Perhaps a surprising amount of sky instances shown here were wrongly classified, many incor-
rect predictions made by the baseline.

(d) Other instances: While some images show airplanes completely out-of-context, the fourth image from the left
in the top row on the other hand shows a very canonical capture of an airplane, except the image is computer
generated.

Figure 13: A randomly drawn selection of images showing instances of SemanticAircraft. Images that
were wrongly classified by any of the Baseline, VBGMM or ResNet18 models are highlighted
in red. Many runway patches were classified as apron instead.

provide a truncated, clear and neat scene image. Having successfully predicted domains for
all airplanes in SemanticAircraft the experiments are concluded.

80

(a) Apron quadrants: In the lower row the second image from the left for example can only be assigned to the
domain apron because a small sun-umbrella has been extended above the cockpit, signifying the fact that the
airplane is not in motion.

(b) Runway quadrants: The confusion of the CNN between apron and runway patches was lower with quadrants
than instances, and these images show perhaps why. Images are not as cluttered as apron quadrants, and
instead often times provide a landscape-esque view of the scene with little airport context near the bottom.

(c) Sky quadrants: These images are exceedingly "clean" and clutter-free in comparison to other domains. It is
interesting to note, that all three methods were able to correctly predict the image on the bottom row third from
left, although the baseline and VBGMM are not aware of the unusual color scheme but only the context vectors.

(d) Other quadrants: It is difficult to make sense of other quadrants even for humans and therefore not surprising
that the exclusion of other patches led to performance increase across all models and dataset-variations.

Figure 14: A randomly drawn selection of quadrants from QRGB treated as individual images. Wrong
domain predictions by any model are again highlighted in red. With quadrants the annotation
procedure was exceedingly difficult. The level of image clutterness is significantly lower than
with instances, across all domains.

81

7 Summary and Outlook

This work provided a broad overview for working with visual semantic context in CV. Many
of the existing works learn or express semantic context only implicitly. Using the proposed
semantic context module instead, context vectors can be extracted directly from semantically
segmented masks. These context vectors were then employed for data distillation, filtering out
unwanted samples during aggregation. The concept of domains for objects of interest as an
extension of semantic context was introduced. As an application of semantic context, the task
of domain prediction was formulated, specifically for images from the aerial domain, predicting
the environment of airplanes in the merged dataset SemanticAircraft. Context was used in its
explicit representation for domain prediction, using a heavily-parameterized threshold algorithm
and unsupervised ML models. Images were further manually annotated with GT domain-labels
allowing the application of CNNs for domain-prediction in the form of image-classification. Re-
sults show that all three models were capable of predicting domains with sufficient accuracy,
the ResNet18 CNN was able to achieve the best accuracy.

The entire procedure can be summarized briefly as follows:

1. Data aggregation and context extraction of airplane images from ADE20K-SceneParsing,
COCO-Stuff and PASCAL-Context. Analyze the context statistics to identify importan-
t/distinct classes as well as similar classes that can be merged to superclasses.

2. Design SemanticAircraft deriving from ADE, COCO and PASCAL and separate the im-
ages into instances of airplanes as well as individual image-quadrants. Provide the
corresponding masks to the semantic context module and filter highly void, indoor or
inappropriately sized patches.

3. Manual domain annotation by assigning one of four domain labels (apron, runway, sky,
other) to every instance and quadrant. Further create two variations of the dataset, one
excluding other samples, and setup a 5-fold cross validation scheme.

4. Three separate models were used for the domain prediction task

a) Baseline - an original algorithm performing prediction in the form of hierarchical
thresholding over the context vectors. Despite decent classification accuracy, multi-
ple shortcomings exist most notably the parameter-heavy nature of the model.

b) Unsupervised algorithms - K-means, GMMs and VBGMMs were used for context-
vector clustering as classification. The silhouette-coefficient was used to evaluate
the models against one-another. Applying the VBGMM on the test set has yielded
acceptable prediction performance, although the clusters created by the VBGMM
themselves could provide further insights into context distributions.

82

c) Supervised CNN - Using the images and domain-annotation labels, various CNN
architectures were trained and applied. While overfitting was very noticeable at the
start, its effect was successfully reduced by lowering model size and implementing a
dropout layer. Final application of the ResNet models yielded the best performance
for all models, with prediction accuracy between 69 and 85 percent.

For the scope of this work, experiments concluded with the prediction of domains, showcas-
ing one possible application of semantic context directly.

In future works, a number of things can be explored when working with visual semantic
context. Perhaps a straightforward idea might be the application in other domains, such as
indoor scenes [135], for helping improve seasonal consistency [136] of algorithms or estimating
the time of day [137]. In a larger learning framework, the domain prediction results could
be used to guide parameter-selection for models fine-tuned on specific domains. A closer
integration into the aggregation procedure with early domain predictions could further help
create a more balanced subdomain coverage in the target dataset.

For obtaining semantic context in a learning procedure, ideas similar to saliency maps might
be employed. Masking objects of interests in images can lead CNNs to only learn the context,
although it should be noted that priors are always bidirectional, i.e. the presence of context
influences the objects and vice versa. Training two separate streams of deep neural networks
for either context or object respectively, then combining the two in a Bayesian inference scheme
might give insight what is truly learned for e.g. object detection. For synthetic image generation
with GANs, context might be applied as a feature space in the adversary to possibly generate
images with certain desirable domain-specific characteristics.

The clusters created with the unsupervised models could be further analyzed for deeper in-
sights into the visual context of the datasets. Other probabilistic domain prediction procedures
could be employed, working more closely on the context distributions – or using distributional
reinterpretation of softmax scores to help model uncertainty more accurately. The possibility of
expressing context in an even lower low-dimensional form as was presented here could allow
the application of generative models.

83

Bibliography

[1] M. J. Choi, A. Torralba, and A. S. Willsky, “Context models and out-of-context objects,”
Pattern Recognition Letters, vol. 33, no. 7, pp. 853–862, 2012.

[2] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zit-
nick, “Microsoft coco: Common objects in context,” in European conference on computer
vision. Springer, 2014, pp. 740–755.

[3] H. Caesar, J. Uijlings, and V. Ferrari, “Coco-stuff: Thing and stuff classes in context,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2018.

[4] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun, and A. Yuille,
“The role of context for object detection and semantic segmentation in the wild,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014,
pp. 891–898.

[5] X. Chen, “Context driven scene understanding,” Ph.D. dissertation, University of Mary-
land, 2015.

[6] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, and W. Xu, “Cnn-rnn: A unified framework
for multi-label image classification,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 2285–2294.

[7] T. Chen, M. Xu, X. Hui, H. Wu, and L. Lin, “Learning semantic-specific graph repre-
sentation for multi-label image recognition,” in Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 522–531.

[8] H. Zhang, K. Dana, J. Shi, Z. Zhang, X. Wang, A. Tyagi, and A. Agrawal, “Context en-
coding for semantic segmentation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 7151–7160.

[9] M. Wang and W. Deng, “Deep visual domain adaptation: A survey,” Neurocomputing,
vol. 312, pp. 135–153, 2018.

[10] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek, “On pixel-
wise explanations for non-linear classifier decisions by layer-wise relevance propaga-
tion,” PloS one, vol. 10, no. 7, 2015.

[11] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam:
Visual explanations from deep networks via gradient-based localization,” International
Journal of Computer Vision, vol. 128, no. 2, p. 336–359, Oct 2019. [Online]. Available:
http://dx.doi.org/10.1007/s11263-019-01228-7

84

http://dx.doi.org/10.1007/s11263-019-01228-7

[12] S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the bias/variance
dilemma,” Neural computation, vol. 4, no. 1, pp. 1–58, 1992.

[13] A. G. Kendall, “Geometry and uncertainty in deep learning for computer vision,” Ph.D.
dissertation, University of Cambridge, 2019.

[14] L.-J. Li, R. Socher, and L. Fei-Fei, “Towards total scene understanding: Classification,
annotation and segmentation in an automatic framework,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition. IEEE, 2009, pp. 2036–2043.

[15] T. Xiao, Y. Liu, B. Zhou, Y. Jiang, and J. Sun, “Unified perceptual parsing for scene un-
derstanding,” in Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 418–434.

[16] A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár, “Panoptic segmentation,” 2018.

[17] R. Montague, “English as a formal language, chapter linguaggi nella societa e nella
tecnica, b,” Visentini et al eds, pp. 189–224, 1970.

[18] ——, “Universal grammar,” Theoria, vol. 36, no. 3, pp. 373–398, 1970.

[19] ——, “The proper treatment of quantification in ordinary english,” in Approaches to nat-
ural language. Springer, 1973, pp. 221–242.

[20] B. Murphy, P. Talukdar, and T. Mitchell, “Learning effective and interpretable seman-
tic models using non-negative sparse embedding,” in Proceedings of COLING 2012.
Mumbai, India: The COLING 2012 Organizing Committee, dec 2012, [Online]. Available:
https://www.aclweb.org/anthology/C12-1118 [Accessed: 22.03.2020].

[21] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, M. A. Ranzato, and T. Mikolov,
“Devise: A deep visual-semantic embedding model,” in Advances in Neural Informa-
tion Processing Systems 26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, Eds. Curran Associates, Inc., 2013, [Online]. Available: http:
//papers.nips.cc/paper/5204-devise-a-deep-visual-semantic-embedding-model.pdf [Ac-
cessed: 22.03.2020].

[22] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representa-
tions in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[23] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE conference on computer vision and pattern
recognition. Ieee, 2009, pp. 248–255.

[24] M. Norouzi, T. Mikolov, S. Bengio, Y. Singer, J. Shlens, A. Frome, G. S. Corrado, and
J. Dean, “Zero-shot learning by convex combination of semantic embeddings,” arXiv
preprint arXiv:1312.5650, 2013.

[25] R. Kiros, R. Salakhutdinov, and R. S. Zemel, “Unifying visual-semantic embeddings with
multimodal neural language models,” CoRR, vol. abs/1411.2539, 2014, [Online]. Avail-
able: http://arxiv.org/abs/1411.2539 [Accessed: 22.03.2020].

85

https://www.aclweb.org/anthology/C12-1118
http://papers.nips.cc/paper/5204-devise-a-deep-visual-semantic-embedding-model.pdf
http://papers.nips.cc/paper/5204-devise-a-deep-visual-semantic-embedding-model.pdf
http://arxiv.org/abs/1411.2539

[26] M. Ren, R. Kiros, and R. Zemel, “Image question answering: A visual semantic embed-
ding model and a new dataset,” Proc. Advances in Neural Inf. Process. Syst, vol. 1, no. 2,
2015.

[27] Z. Ren, H. Jin, Z. Lin, C. Fang, and A. Yuille, “Multi-instance visual-semantic embedding,”
arXiv preprint arXiv:1512.06963, 2015.

[28] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word represen-
tation,” in Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), 2014, pp. 1532–1543.

[29] W. Liu, T. Mei, Y. Zhang, C. Che, and J. Luo, “Multi-task deep visual-semantic embedding
for video thumbnail selection,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015.

[30] Y. Pan, T. Mei, T. Yao, H. Li, and Y. Rui, “Jointly modeling embedding and translation to
bridge video and language,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016.

[31] Y. Cao, M. Long, J. Wang, Q. Yang, and P. S. Yu, “Deep visual-semantic hashing for
cross-modal retrieval,” in Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. ACM, 2016.

[32] Z. Niu, M. Zhou, L. Wang, X. Gao, and G. Hua, “Hierarchical multimodal lstm for dense
visual-semantic embedding,” in Proceedings of the IEEE International Conference on
Computer Vision, 2017.

[33] R. Pérez-Arnal, A. Vilalta, D. Garcia-Gasulla, U. Cortés, E. Ayguadé, and J. Labarta, “A
visual distance for wordnet,” 2018.

[34] L. Rabiner and B. Juang, “An introduction to hidden markov models,” ieee assp maga-
zine, vol. 3, no. 1, pp. 4–16, 1986.

[35] M. Richardson and P. Domingos, “Markov logic networks,” Machine learning, vol. 62, no.
1-2, pp. 107–136, 2006.

[36] D. Steininger and C. Beleznai, “Semantic labeling enhanced by a spatial context prior,”
fh-ooe, 2016.

[37] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “Sun database: Large-scale
scene recognition from abbey to zoo,” in 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. IEEE, 2010, pp. 3485–3492.

[38] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic representation of
the spatial envelope,” International journal of computer vision, vol. 42, no. 3, pp. 145–
175, 2001.

[39] Z. Fu, T. Xiang, E. Kodirov, and S. Gong, “Zero-shot object recognition by semantic man-
ifold distance,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015.

86

[40] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE transactions on
information theory, vol. 13, no. 1, pp. 21–27, 1967.

[41] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The pascal
visual object classes (voc) challenge,” International journal of computer vision, vol. 88,
no. 2, pp. 303–338, 2010.

[42] J. Tighe and S. Lazebnik, “Superparsing: scalable nonparametric image parsing with
superpixels,” in European conference on computer vision. Springer, 2010, pp. 352–
365.

[43] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu, “Semantic segmentation with
second-order pooling,” in European Conference on Computer Vision. Springer, 2012,
pp. 430–443.

[44] A. Amidi and S. Amidi. (2018) Stanford-cs-230-deep-learning. [Online]. Avail-
able: https://github.com/afshinea/stanford-cs-230-deep-learning/blob/master/en/
super-cheatsheet-deep-learning.pdf [Accessed: 16.12.2019].

[45] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual representation learning by
context prediction,” in Proceedings of the IEEE International Conference on Computer
Vision, 2015.

[46] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, “Context encoders:
Feature learning by inpainting,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016.

[47] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng, “Nus-wide: a real-world
web image database from national university of singapore,” in Proceedings of the ACM
international conference on image and video retrieval, 2009, pp. 1–9.

[48] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The pascal
visual object classes challenge 2007 (voc2007) results,” 2007.

[49] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.

[50] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–7141.

[51] J. Fu, J. Liu, Y. Wang, Y. Li, Y. Bao, J. Tang, and H. Lu, “Adaptive context network for
scene parsing,” in Proceedings of the IEEE international conference on computer vision,
2019.

[52] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” Journal of
Big data, vol. 3, no. 1, p. 9, 2016.

[53] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on knowledge
and data engineering, vol. 22, no. 10, 2009.

87

https://github.com/afshinea/stanford-cs-230-deep-learning/blob/master/en/super-cheatsheet-deep-learning.pdf
https://github.com/afshinea/stanford-cs-230-deep-learning/blob/master/en/super-cheatsheet-deep-learning.pdf

[54] G. Csurka, “Domain adaptation for visual applications: A comprehensive survey,” arXiv
preprint arXiv:1702.05374, 2017.

[55] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual and physical
simulation for autonomous vehicles,” in Field and service robotics. Springer, 2018.

[56] M. Mancini, S. R. Bulò, B. Caputo, and E. Ricci, “Adagraph: Unifying predictive and
continuous domain adaptation through graphs,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019.

[57] G. Wilson and D. J. Cook, “A survey of unsupervised deep domain adaptation,” arXiv
preprint arXiv:1812.02849, 2019.

[58] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,” arXiv
preprint arXiv:1409.7495, 2014.

[59] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, “A
theory of learning from different domains,” Machine learning, vol. 79, no. 1-2, 2010.

[60] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, “Simultaneous deep transfer across
domains and tasks,” in Proceedings of the IEEE International Conference on Computer
Vision, 2015.

[61] B. Bolländer. (2019) Deep domain adaptation in com-
puter vision. [Online]. Available: https://towardsdatascience.com/
deep-domain-adaptation-in-computer-vision-8da398d3167f [Accessed: 18.11.2019].

[62] Y.-H. Chen, W.-Y. Chen, Y.-T. Chen, B.-C. Tsai, Y.-C. Frank Wang, and M. Sun, “No more
discrimination: Cross city adaptation of road scene segmenters,” in Proceedings of the
IEEE International Conference on Computer Vision, 2017.

[63] C. Sakaridis, D. Dai, and L. V. Gool, “Guided curriculum model adaptation and
uncertainty-aware evaluation for semantic nighttime image segmentation,” in Proceed-
ings of the IEEE International Conference on Computer Vision, 2019.

[64] Y. Zhang, P. David, and B. Gong, “Curriculum domain adaptation for semantic segmenta-
tion of urban scenes,” in Proceedings of the IEEE International Conference on Computer
Vision, 2017.

[65] Y. Zhang, P. David, H. Foroosh, and B. Gong, “A curriculum domain adaptation approach
to the semantic segmentation of urban scenes,” IEEE transactions on pattern analysis
and machine intelligence, 2019.

[66] I. Sikirić, K. Brkić, P. Bevandić, I. Krešo, J. Krapac, and S. Šegvić, “Traffic scene clas-
sification on a representation budget,” IEEE Transactions on Intelligent Transportation
Systems, 2019.

[67] O. Franěk. (2003) Apron sever - výstavba terminálu, červen 2003. [Online]. Available:
http://gallery.vacc-cz.org/album04/abz [Accessed: 19.03.2020].

88

https://towardsdatascience.com/deep-domain-adaptation-in-computer-vision-8da398d3167f
https://towardsdatascience.com/deep-domain-adaptation-in-computer-vision-8da398d3167f
http://gallery.vacc-cz.org/album04/abz

[68] A. Hunt. (2015) Boeing everett factory. [Online]. Available: http://www.crash-aerien.
news/forum/les-avions-oublies-qui-pourrissent-sur-un-bout-de-tarmac-t2387-705.html
[Accessed: 19.03.2020].

[69] S. Ahmed. (2014) List of international / domestic airports in india – general aware-
ness (ga) for bank exams. [Online]. Available: https://allindiaroundup.com/general/
international-domestic-airports-in-india-general-awareness/ [Accessed: 18.03.2020].

[70] png cloud. (2019) Person walking towards airplane on airport. [Online].
Available: https://png.cloud/f/person-walking-towards-airplane-on-airport/
8ff499d8bbda49e381c2-201907080619.html [Accessed: 18.03.2020].

[71] King 5. (2019) Boeing max 737 planes parked on airport apron in moses lake. [Online].
Available: https://www.youtube.com/watch?v=QrMf6ys3yj4 [Accessed: 19.03.2020].

[72] Induced. (2019) Stansted airport stn. [Online]. Available: http://induced.info/?s=
Stansted+Airport+STN [Accessed: 18.03.2020].

[73] Tawsif Salam. (2015) Qatar airways airbus a380-800 at heathrow airport terminal
4 before flying to doha, 6 jan 2015. [Online]. Available: https://upload.wikimedia.
org/wikipedia/commons/0/07/Qatar_Airways_Airbus_A380-800_at_Heathrow_Airport_
Terminal_4_before_Flying_to_Doha%2C_6_Jan_2015.jpg [Accessed: 18.03.2020].

[74] Rtitb airside. (2018) How to decrease aircraft turnaround times. [On-
line]. Available: https://www.rtitb-airside.com/wp-content/uploads/2018/11/
How-to-Decrease-Aircraft-Turnaround-Times-1024x683.jpg [Accessed: 18.03.2020].

[75] O. Zendel, K. Honauer, M. Murschitz, D. Steininger, and G. Fernandez Dominguez,
“Wilddash-creating hazard-aware benchmarks,” in Proceedings of the European Con-
ference on Computer Vision (ECCV), 2018, pp. 402–416.

[76] R. M. Haralick, K. Shanmugam, and I. H. Dinstein, “Textural features for image clas-
sification,” IEEE Transactions on systems, man, and cybernetics, no. 6, pp. 610–621,
1973.

[77] D. Lu and Q. Weng, “A survey of image classification methods and techniques for improv-
ing classification performance,” International journal of Remote sensing, vol. 28, no. 5,
pp. 823–870, 2007.

[78] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the fisher kernel for large-scale
image classification,” in European conference on computer vision. Springer, 2010, pp.
143–156.

[79] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convo-
lutional neural networks,” in Advances in neural information processing systems, 2012,
pp. 1097–1105.

89

http://www.crash-aerien.news/forum/les-avions-oublies-qui-pourrissent-sur-un-bout-de-tarmac-t2387-705.html
http://www.crash-aerien.news/forum/les-avions-oublies-qui-pourrissent-sur-un-bout-de-tarmac-t2387-705.html
https://allindiaroundup.com/general/international-domestic-airports-in-india-general-awareness/
https://allindiaroundup.com/general/international-domestic-airports-in-india-general-awareness/
https://png.cloud/f/person-walking-towards-airplane-on-airport/8ff499d8bbda49e381c2-201907080619.html
https://png.cloud/f/person-walking-towards-airplane-on-airport/8ff499d8bbda49e381c2-201907080619.html
https://www.youtube.com/watch?v=QrMf6ys3yj4
http://induced.info/?s=Stansted+Airport+STN
http://induced.info/?s=Stansted+Airport+STN
https://upload.wikimedia.org/wikipedia/commons/0/07/Qatar_Airways_Airbus_A380-800_at_Heathrow_Airport_Terminal_4_before_Flying_to_Doha%2C_6_Jan_2015.jpg
https://upload.wikimedia.org/wikipedia/commons/0/07/Qatar_Airways_Airbus_A380-800_at_Heathrow_Airport_Terminal_4_before_Flying_to_Doha%2C_6_Jan_2015.jpg
https://upload.wikimedia.org/wikipedia/commons/0/07/Qatar_Airways_Airbus_A380-800_at_Heathrow_Airport_Terminal_4_before_Flying_to_Doha%2C_6_Jan_2015.jpg
https://www.rtitb-airside.com/wp-content/uploads/2018/11/How-to-Decrease-Aircraft-Turnaround-Times-1024x683.jpg
https://www.rtitb-airside.com/wp-content/uploads/2018/11/How-to-Decrease-Aircraft-Turnaround-Times-1024x683.jpg

[80] C. P. Papageorgiou, M. Oren, and T. Poggio, “A general framework for object detec-
tion,” in Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271).
IEEE, 1998, pp. 555–562.

[81] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-
time object detection,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 779–788.

[82] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic seg-
mentation,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 3431–3440.

[83] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate
object detection and semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2014, pp. 580–587.

[84] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for semantic segmenta-
tion,” in Proceedings of the IEEE international conference on computer vision, 2015, pp.
1520–1528.

[85] L. Huang, J. Peng, R. Zhang, G. Li, and L. Lin, “Learning deep representations for
semantic image parsing: a comprehensive overview,” Frontiers of Computer Science,
vol. 12, 08 2018.

[86] X. Huang, X. Cheng, Q. Geng, B. Cao, D. Zhou, P. Wang, Y. Lin, and R. Yang, “The
apolloscape dataset for autonomous driving,” arXiv: 1803.06184, 2018.

[87] J. Geyer, Y. Kassahun, M. Mahmudi, X. Ricou, R. Durgesh, A. S. Chung, L. Hauswald,
V. H. Pham, M. Mühlegg, S. Dorn, T. Fernandez, M. Jänicke, S. Mirashi, C. Savani,
M. Sturm, O. Vorobiov, M. Oelker, S. Garreis, and P. Schuberth, “A2D2: Audi Au-
tonomous Driving Dataset,” Audi, Tech. Rep., 2020, [Online]. Available: https://www.
a2d2.audi [Accessed: 07.09.2020].

[88] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and T. Darrell, “Bdd100k:
A diverse driving dataset for heterogeneous multitask learning,” 2018.

[89] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene understand-
ing,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[90] G. Varma, A. Subramanian, A. Namboodiri, M. Chandraker, and C. Jawahar, “Idd:
A dataset for exploring problems of autonomous navigation in unconstrained environ-
ments,” in 2019 IEEE Winter Conference on Applications of Computer Vision (WACV).
IEEE, 2019, pp. 1743–1751.

[91] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti vision
benchmark suite,” in 2012 IEEE Conference on Computer Vision and Pattern Recogni-
tion. IEEE, 2012, pp. 3354–3361.

90

https://www.a2d2.audi
https://www.a2d2.audi

[92] G. Neuhold, T. Ollmann, S. Rota Bulo, and P. Kontschieder, “The mapillary vistas dataset
for semantic understanding of street scenes,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 4990–4999.

[93] O. Zendel, M. Murschitz, M. Zeilinger, D. Steininger, S. Abbasi, and C. Beleznai,
“Railsem19: A dataset for semantic rail scene understanding,” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2019.

[94] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images,”
CS, University of Toronto, Tech. Rep., 2009.

[95] B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso, and A. Torralba, “Semantic
understanding of scenes through the ade20k dataset,” International Journal of Computer
Vision, vol. 127, no. 3, pp. 302–321, 2016.

[96] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba, “Scene parsing through
ade20k dataset,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 633–641.

[97] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun, and A. Yuille,
“The role of context for object detection and semantic segmentation in the wild,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2014.

[98] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Kamali,
S. Popov, M. Malloci, T. Duerig et al., “The open images dataset v4: Unified image
classification, object detection, and visual relationship detection at scale,” arXiv preprint
arXiv:1811.00982, 2018.

[99] Z. Liu, Z. Miao, X. Zhan, J. Wang, B. Gong, and S. X. Yu, “Large-scale long-tailed recog-
nition in an open world,” 2019.

[100] R. Tudor Ionescu, B. Alexe, M. Leordeanu, M. Popescu, D. P. Papadopoulos, and V. Fer-
rari, “How hard can it be? estimating the difficulty of visual search in an image,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2157–2166.

[101] EHQ Production. (2018) Airfield planes aerial. [Online]. Available: https://my.
melbourneairport.com/taxiway-zulu [Accessed: 19.03.2020].

[102] B. Boettger. (2016) Fresh asphalt paving on the taxiways and tie-down area of the kenai
municipal airport sits ready for use. [Online]. Available: https://www.alaskajournal.com/
2016-10-02/kenai-airport-taxiway-renovation-now-complete [Accessed: 19.03.2020].

[103] Nagpuru Updates. (2020) Amravati-mum scheduled flights from next year. [Online]. Avail-
able: https://nagpurupdates.com/amravati-mum-scheduled-flights-from-next-year/ [Ac-
cessed: 19.03.2020].

[104] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.

91

https://my.melbourneairport.com/taxiway-zulu
https://my.melbourneairport.com/taxiway-zulu
https://www.alaskajournal.com/2016-10-02/kenai-airport-taxiway-renovation-now-complete
https://www.alaskajournal.com/2016-10-02/kenai-airport-taxiway-renovation-now-complete
https://nagpurupdates.com/amravati-mum-scheduled-flights-from-next-year/

[105] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on information theory,
vol. 28, no. 2, pp. 129–137, 1982.

[106] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference: A review
for statisticians,” Journal of the American Statistical Association, vol. 112, no. 518,
p. 859–877, Feb 2017. [Online]. Available: http://dx.doi.org/10.1080/01621459.2017.
1285773

[107] F. Hirschberger, D. Forster, and J. Lücke, “Large scale clustering with variational em for
gaussian mixture models,” 2018.

[108] M. Titsias, “Variational learning of inducing variables in sparse gaussian processes,” in
Artificial Intelligence and Statistics, 2009, pp. 567–574.

[109] M. Titsias and N. D. Lawrence, “Bayesian gaussian process latent variable model,” in
Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics, 2010, pp. 844–851.

[110] A. Damianou and N. Lawrence, “Deep gaussian processes,” in Artificial Intelligence and
Statistics, 2013, pp. 207–215.

[111] K. El-Arini. (2008) Dirichlet processes - a gentle tutorial. [Online]. Available: https://www.
cs.cmu.edu/~./kbe/dp{_}tutorial.pdf [Accessed: 20.04.2020].

[112] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg et al., “Scikit-learn: Machine learning in python,”
the Journal of machine Learning research, vol. 12, pp. 2825–2830, 2011.

[113] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis,” Journal of computational and applied mathematics, vol. 20, pp. 53–65,
1987.

[114] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduction to cluster
analysis. John Wiley & Sons, 2009, vol. 344.

[115] S. says Reinstate Monica (https://stats.stackexchange.com/users/22311/
sycorax-says-reinstate-monica). Why is euclidean distance not a good metric in
high dimensions? Cross Validated. [Online]. Available: https://stats.stackexchange.com/
q/99191 [Accessed: 20.04.2020].

[116] user11852 (https://stats.stackexchange.com/users/11852/us%ce%b5r11852). Are there
cases where pca is more suitable than t-sne? Cross Validated. [Online]. Available: https:
//stats.stackexchange.com/q/249520 [Accessed: 20.04.2020].

[117] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seeding,” Stanford,
Tech. Rep., 2006.

[118] J. H. Friedman, “Exploratory projection pursuit,” Journal of the American statistical asso-
ciation, vol. 82, no. 397, pp. 249–266, 1987.

92

http://dx.doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.1080/01621459.2017.1285773
https://www.cs.cmu.edu/~./kbe/dp{_}tutorial.pdf
https://www.cs.cmu.edu/~./kbe/dp{_}tutorial.pdf
https://stats.stackexchange.com/users/22311/sycorax-says-reinstate-monica)
https://stats.stackexchange.com/users/22311/sycorax-says-reinstate-monica)
https://stats.stackexchange.com/q/99191
https://stats.stackexchange.com/q/99191
https://stats.stackexchange.com/users/11852/us%ce%b5r11852)
https://stats.stackexchange.com/q/249520
https://stats.stackexchange.com/q/249520

[119] S. Morbieu. (2019) Accuracy: from classification to clustering evaluation. [Online]. Avail-
able: https://smorbieu.gitlab.io/accuracy-from-classification-to-clustering-evaluation/
[Accessed: 29.05.2020].

[120] J. Dellinger. Weight initialization in neural networks: A journey from the
basics to kaiming. [Online]. Available: https://towardsdatascience.com/
weight-initialization-in-neural-networks-a-journey-from-the-basics-to-kaiming-954fb9b47c79
[Accessed: 16.12.2019].

[121] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-
level performance on classification,” in Proceedings of the IEEE international conference
on computer vision, 2015, pp. 1026–1034.

[122] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural
networks,” in Proceedings of the thirteenth international conference on artificial intelli-
gence and statistics, 2010, pp. 249–256.

[123] F.-F. Li, R. Krishna, and X. Danfei. (2020) Cs231n: Convolutional neural networks for
visual recognition. [Online]. Available: https://cs231n.github.io/neural-networks-2/ [Ac-
cessed: 29.05.2020].

[124] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep
learning,” Journal of Big Data, vol. 6, no. 1, p. 60, 2019.

[125] A. Mikołajczyk and M. Grochowski, “Data augmentation for improving deep learning
in image classification problem,” in 2018 international interdisciplinary PhD workshop
(IIPhDW). IEEE, 2018, pp. 117–122.

[126] A. B. Jung, K. Wada, J. Crall, S. Tanaka, J. Graving, C. Reinders, S. Yadav, J. Banerjee,
G. Vecsei, A. Kraft, Z. Rui, J. Borovec, C. Vallentin, S. Zhydenko, K. Pfeiffer, B. Cook,
I. Fernández, F.-M. De Rainville, C.-H. Weng, A. Ayala-Acevedo, R. Meudec, M. Laporte
et al. (2020) ImgAug. [Online]. Available: https://github.com/aleju/imgaug [Accessed:
25.03.2020].

[127] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 770–778.

[128] F. Yu, V. Koltun, and T. Funkhouser, “Dilated residual networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp. 472–480.

[129] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted
residuals and linear bottlenecks,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 4510–4520.

[130] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,
“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model
size,” arXiv preprint arXiv:1602.07360, 2016.

93

https://smorbieu.gitlab.io/accuracy-from-classification-to-clustering-evaluation/
https://towardsdatascience.com/weight-initialization-in-neural-networks-a-journey-from-the-basics-to-kaiming-954fb9b47c79
https://towardsdatascience.com/weight-initialization-in-neural-networks-a-journey-from-the-basics-to-kaiming-954fb9b47c79
https://cs231n.github.io/neural-networks-2/
https://github.com/aleju/imgaug

[131] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[132] N. Qian, “On the momentum term in gradient descent learning algorithms,” Neural net-
works, vol. 12, no. 1, pp. 145–151, 1999.

[133] C. Zhong, L. Hu, X. Yue, T. Luo, Q. Fu, and H. Xu, “Ensemble clustering based on
evidence extracted from the co-association matrix,” Pattern Recognition, vol. 92, pp. 93–
106, 2019.

[134] H. Alashwal, M. El Halaby, J. J. Crouse, A. Abdalla, and A. A. Moustafa, “The application
of unsupervised clustering methods to alzheimer’s disease,” Frontiers in computational
neuroscience, vol. 13, p. 31, 2019.

[135] J. Yang, J. Xu, K. Li, Y.-K. Lai, H. Yue, J. Lu, H. Wu, and Y. Liu, “Learning to reconstruct
and understand indoor scenes from sparse views,” 2019.

[136] M. Larsson, E. Stenborg, L. Hammarstrand, T. Sattler, M. Pollefeys, and F. Kahl, “A
cross-season correspondence dataset for robust semantic segmentation,” 2019.

[137] L. Sun, K. Wang, K. Yang, and K. Xiang, “See clearer at night: Towards robust nighttime
semantic segmentation through day-night image conversion,” 2019.

94

List of Figures

Figure 1 Example images not part of any public dataset showing the three most com-
mon domains of airplanes during operation: apron, runway and sky. Example
ground-truth domain labels according to the labeling scheme outlined in sec-
tion 5.2 are given in the upper-left corner of the individual images. 18

Figure 2 This figure shows the limitations of existing datasets that include aerial scenes,
by highlighting images which are so unusual or devoid of significant informa-
tion, making them prohibitive in a learning scheme. This is one of the reasons
exercising data distillation of public datasets can have significant benefits for
the learning pipeline, not only in the aerial domain. 24

Figure 3 OpenImages is a vast dataset aggregated freely from Flicker, meaning many
images (at least aircraft and airplane images) are hugely out-of-context and
irrelevant for most learning procedures. A significant number of illustrations or
drawings of airplanes is also present. 25

Figure 4 The first two subfigures show two other domains aircraft traverse, taxiway and
TOL. These images are idealized examples and do not appear as such in
any of the used datasets. At the bottom out-of-context images from COCO
are shown. An example ground-truth domain label is shown in the upper left
corner of the individual images, showing the split of taxiway and TOL images
to apron/runway and runway/sky respectively. 26

Figure 5 The class hierarchy of SemanticAircraft, deriving from ADE20K-SceneParsing,
COCO-Stuff and PASCAL-Context. SemanticAircraft consists of twelve
classes in total: Aircraft, void and ten context superclasses. Indoor consists
of many types of surfaces predominately found in indoor environments. 43

Figure 6 Correlation matrices of the instances and quadrants of SemanticAircraft, giv-
ing insight into the semantic content of images similar to the concept of label
co-occurrence. Notable is the change of correlation between building and
pavement from instances to quadrants, possibly alluding to the fact that build-
ings were truncated in quadrants. 46

Figure 7 Per-class label-neighborhood transitions around airplanes in SemanticAircraft
instances. 47

Figure 8 Per-class label-neighborhood around airplanes in SemanticAircraft quadrants. 48
Figure 9 The developed framework can predict domains of SemanticAircraft instances

and quadrants using either input images with domain-labels training a CNN or
use the extracted context vectors C with either a (quasi) deterministic threshold
algorithm as baseline or unsupervised mixture models for clustering of context
vectors. 50

95

Figure 10 For the K-means model it was attempted to set explicit cluster centers, using
best-guess values derived from semantic context analysis. For every domain
(row), an estimate was made regarding the average amount of context ob-
served in that domain for every class (column). 65

Figure 11 Plot showing the training and validation accuracy, as well as the training-loss
during tuning of the ResNet50 model in configuration-I. A number of things can
be observed at a glace, for example the fact that the model is overfitting on the
training data. 72

Figure 12 Accuracy-loss plots for the best performing models on instances and quad-
rants. Plots were captured during model-tuning. 75

Figure 13 A randomly drawn selection of images showing instances of SemanticAir-
craft. Images that were wrongly classified by any of the Baseline, VBGMM
or ResNet18 models are highlighted in red. Many runway patches were clas-
sified as apron instead. 80

Figure 14 A randomly drawn selection of quadrants from QRGB treated as individual
images. Wrong domain predictions by any model are again highlighted in
red. With quadrants the annotation procedure was exceedingly difficult. The
level of image clutterness is significantly lower than with instances, across all
domains. 81

Figure 15 Plots of various models trained on instances of SemanticAircraft. 133
Figure 16 Plots of the six different ResNet18 configurations. 134
Figure 17 Four more plots of models trained on SemanticAircraft instances. 135
Figure 18 Plots of different models trained on quadrants of SemanticAircraft. 136
Figure 19 Plots of all ResNet18 models. 137
Figure 20 Plots of ResNet34 and ResNet50 models trained on quadrants. 138

96

List of Tables

Table 1 Comparison of common things and stuff classes in the three main aerial
domains between ideal and public data, specifically the datasets ADE20K-
SceneParsing, COCO-Stuff and PASCAL-Context. Individual rows group
classes in a semantic sense. Labels given in italics denote classes that do
not occur in all three datasets. Empty cells on the left side are for classes oc-
curring in data that would not occur in this domain in the real world – empty
cells on the right signify things or stuff occurring in the domains in reality, but
lacking a descriptive label in the dataset. 15

Table 2 Comparison of common classes appearing in the two transition domains taxi-
way and TOL, as well as other. The distinct lack of classes representing objects
from taxiway and TOL in datasets prohibits learning a proper distinction, while
the vast amount of classes appearing out-of-context reflect the necessity of the
other domain. Classnames in italics reference categories exlusive to some of
the three datasets, not occurring in all three. 27

Table 3 Image, image-quadrant and instance-wide semantic context around airplanes
in the dataset ADE20K-SceneParsing. The fairly high amount of sea context
stems from fifteen images showing an aircraft carrier and various fighter planes
at sea. Sky context is significantly higher in the top half of images than the
bottom. A significant percentage of instances are without context, while only
some lower-half image quadrants are context-void. 36

Table 4 Semantic context around airplanes in the dataset COCO-Stuff. Sky-like classes
such as sky-other, clouds and fog are dominating the context. A much lower
percentage of image-patches are void of any context, compared to ADE20K. . . 37

Table 5 Semantic context around airplanes in the dataset PASCAL-Context. As column
2 shows, the upper half of images is heavily dominated by sky. The proportion
of context-less image-regions is similarly low to COCO-Stuff. 38

97

Table 6 Context across images and image-quadrants of SemanticAircraft pre-filtering.
Sky, pavement and building are the most common context elements. Void
labels were included in this estimation and the difference in void pixels between
upper and lower image halves are significant. This can be explained due to
nature of scenery images naturally being more cluttered in the bottom half, with
buildings, pavement variants and plants appearing in close proximity leading
to an increased number of void pixels, either due to the uncertainty during
annotation or the numerous labeling transitions carrying broad void-pixelated
edges. Since void pixels were included in this calculation, the last row shows
the number of image-regions only holding airplane pixels, in other words heavily
truncated airplanes. 40

Table 7 Context across instances in various scale sizes of SemanticAircraft – pre-
filtering. In the header row, the first number describes the percentage increase
size of bounding boxes, while the second number gives instances without any
context (only aircraft pixels) in that scaling, from a total of 6354 instances.
The number of context-less instances decreases as the bounding box area in-
creases. 41

Table 8 Results of filtering SemanticAircraft by context using classes void and indoor.
Top row gives the p-values for the quantiles while table entries are the corre-
sponding values qp. Filtering the top five percent by indoor is too lenient, allow-
ing up to 18-percent of indoor pixels in instances, while setting pindoor = 0.85

patches without any indoor pixels are arbitrarily filtered. Final values (0.93, 0.93)

allow barely any indoor pixels while e.g. instances with 16.8-percent of void
pixels are still accepted, striking a good balance. 42

Table 9 Visual context of SemanticAircraft. First column gives the average context
across all 3854 instances. Second and third column give the context in quad-
rants I and III of the instances respectively. Last column shows the context
across all 13265 quadrants, treated as individual images. Void pixels were ig-
nored during calculation. No image-regions without any semantic context are
included any longer. 44

Table 10 Direction-wise label transition from airplane pixels to other classes in instances
of SemanticAircraft. Sky is not only the most prevalent context class as a whole,
it is also oftentimes the stuff-class immediately surrounding airplanes. 49

Table 11 Label-neighborhood transitions from airplane pixels to other classes in Seman-
ticAircraft-quadrants. 49

98

Table 12 Ranges and weights used for domain prediction using the baseline, during all
three configurations. For every domain (column) and every (contextually rel-
evant) superclass of SemanticAircraft (rows), the left-hand subcolumn gives
the specific range, while the right subcolumn gives the corresponding weight.
Changes to parameters are reflected in the color, with black being the optimal
found value. For example, for the domain other the upper bound of sky-context
was changed from 50 to 60 back to 50 again from configurations I to III. 57

Table 13 Recall of the baseline model during model-tuning. The model performs best on
sky – the simplest of domains in terms of image difficulty. Since sky is also the
most frequent domain, total recall is higher average recall. 57

Table 14 Final domain prediction results using the baseline. Classification results im-
proved significantly when excluding other patches. The difference in accuracy
between instances and quadrants is insignificant. Notable also is the strong
precision on apron patches across the board. Low precision with other samples
indicate a significant amount of false-positive assignments to the other domain
during classification. For total measures, precision is equivalent to recall. . . . 59

Table 15 Confusion matrices for baseline results, showing significant confusion between
runway and other as well as apron and other. Actual labels (rows) are visible
on the left vs. predicted labels (columns). Sky is predicted with the least con-
fusion. In instances, 1399 samples are assigned other, which is more than any
other domain, while only 762 instances were actually annotated with the other
label. 60

Table 16 Covariance ratio in all principal components following PCA of SemanticAircraft.
Before standardization, it appears one component is dominating the covariance
(presumably sky). With standardized data, the covariance is much more evenly
spread. The last component, which is presumed to be indoor and almost en-
tirely removed from the context, holds very little covariance. 64

Table 17 Optimal hyperparameters according to the silhouette coefficients of GMMs fit
on SemanticAircraft for domain prediction. A grid search was run to find the
best combination of initialization and covariance type with respective data pre-
processing. For all models it was discovered that the initialization of Gaussian
means using K-means cluster centers improved the performance. The best
performing models according to the observed silhouette coefficients also used
either diagonal or tied covariance matrices, instead of a full covariance matrix.
This is perhaps surprising, although Pedregosa et al. [112] argue, that mixture
models with full covariance are prone to overfitting, since the mixture compo-
nents can take any shape and location of distributions. Data pre-processing in
the form of standardization and whitening provided similarly positive results. . . 67

99

Table 19 Final results of the application of unsupervised models, specifically a VBGMM,
for domain prediction. It should be noted, that this obtained recall from permuta-
tions is the total recall, that is TotalRecall = TP

TP+FN across the entire dataset,
which is always higher (or at least equal) than average recall due to class-
imbalance. In SemanticAircraft this is particularly relevant, since the largest
number of patches stem from the easiest domain, sky. The deviation is again
provided, since the test data is split across five separate folds. 68

Table 18 This table shows the the tuning and model-search process of the VBGMM. . . . 69
Table 20 Parameter search of the supervised models. Multiple architectures, image-

augmentation techniques and other hyperparameters were applied and tuned.
To combat the problem of overfitting, reducing model size and adding a dropout
layer proved successful. The last column gives the total recall for instances I
and quadrants Q respectively. 74

Table 21 Final results of the ResNet18 models trained for domain prediction on Semanti-
cAircraft. Notable is the significant increase across all metrics when excluding
other images, as well as the difference of 3 to 5 percent between average and
total accuracy, due to the many "easy" sky patches. Prediction of quadrants
was slightly less accurate, presumably due to the annotation difficulties. 76

Table 22 Confusion matrices following CNN-based domain prediction. Noticeable is the
confusion between apron and other patches, particularly for the instances. Pre-
diction of the sky domain was again the most accurate. When excluding other,
the expected confusion between apron and runway comes to light. 77

Table 23 Total recall of all three models predicting domains of airplane instances and
quadrants from SemanticAircraft. The CNN shows strong classification re-
sults and performs the best across all metrics except quadrants when excluding
other samples. The second most accurate model has proven to be the thresh-
old algorithm baseline followed by the unsupervised VBGMM. 78

100

List of Algorithms

Algorithm 1 Obtaining semantic context . 33
Algorithm 2 Obtaining neighborhood label transition . 34
Algorithm 3 Semantic context filter . 41
Algorithm 4 Predict domains (quasi) deterministically via hierarchical thresholding 56

101

List of Abbreviations and Acronyms

ADAS advanced driver assistance systems

AI artificial intelligence

AMP absorbing Markov-chain process

BBox bounding box

BIC Bayesian information criterion

CNN convolutional neural networks

CRF conditional random field

CV computer vision

DDA deep domain adaptation

DA domain adaptation

DGP deep Gaussian processes

DL deep learning

DRN Dilated Residual Networks

DRCN deep reconstruction classification networks

EM expectancy maximization

FC fully connected

FN false negative

FP false positive

GAN generative adversarial networks

GMM Gaussian mixture models

GP Gaussian processes

GPU graphical processing units

GT ground truth

IoU intersection over union

102

KL Kullback-Leibler

LSTM long short-term memory

LVM latent variable models

MAP maximum a posteriori

MMD maximum mean discrepancy

MRF Markov random fields

ML machine learning

NNSE non-negative sparse embedding

NLP natural language processing

PCA principal component analysis

PDA predictive domain adaptation

RBF radial basis function

ReLU rectified linear unit

RKHS reproducing kernel Hilbert space

RNN recurrent neural network

RoI regions of interest

SGD stochastic gradient descent

SVD singular value decomposition

SVM support vector machines

TL transfer learning

TOL Take-off or landing

TP true positive

t-SNE T-distributed stochastic neighborhood embedding

UAV unmanned aerial vehicles

UIoU uncertainty-aware intersection over union

VBGMM variational Bayesian gaussian mixture models

VI Variational inference

VNN Von-Neumann neighborhood

ZSL zero shot learning

103

Appendices

104

A Mathematical Notation

The mathematical content in this work is kept to the minimum necessary to achieve an un-
derstanding in the field of semantic context. Nevertheless, an understanding of the relevant
concepts from ML, DL and CV is essential.

Scalar variables are denoted with a single letter such as x, while vectors are given in bold
lower case such as x and assumed to be column vectors. Upper case bold letters are used
for matrices X and calligraphy style X is used for the concept of datasets or other higher
dimensional spaces. The notation (x, y) denotes a row vector of size 1 × 2 with entries being
the scalar x and y respectively, while x = (x, y)T is the corresponding column vector. The
notation [x, y] is the interval from x to y including x and y themselves. The variance is given
by v̂ar(x) while the covariance and correlation are given by ĉov(X) and ĉor(X) respectively.

105

B Context and Neighborhood Statistics

This appendix provides the complete dataset-wide context and neighborhood statistics ob-
tained with the semantic context module in full detail.

B.1 ADE20K - SceneParsing

B.1.1 Images

Semantic Context

Context across the entire image
sky: 40.42, runway: 19.41, sea: 7.43, building: 6.40, grass: 3.84, wall: 3.09, floor: 3.08,
ceiling: 2.43, earth: 2.06, tree: 1.91, person: 1.66, road: 1.12, mountain: 0.92, field: 0.91,
windowpane: 0.90, car: 0.58, skyscraper: 0.49, truck: 0.49, hill: 0.45, sand: 0.36, escalator:
0.32, fence: 0.31, land: 0.20, case: 0.13, pole: 0.13, ship: 0.08, seat: 0.07, signboard: 0.06,
water: 0.06, conveyor_belt: 0.06, stairway: 0.06, plant: 0.05, river: 0.05, streetlight: 0.04,
crt_screen: 0.04, bus: 0.04, van: 0.03, column: 0.03, box: 0.03, bulletin_board: 0.03, house:
0.03, door: 0.02, tower: 0.02, painting: 0.02, stairs: 0.02, railing: 0.02, cabinet: 0.02, step:
0.02, path: 0.02, sculpture: 0.01, other: 0.03
images with no context: 0/142

Context in specific image quadrants
quadrant-I:
sky: 65.79, building: 7.14, sea: 5.87, ceiling: 4.38, wall: 4.09, runway: 2.83, tree: 2.56,
windowpane: 1.41, earth: 0.92, mountain: 0.87, hill: 0.62, grass: 0.59, person: 0.55, esca-
lator: 0.35, skyscraper: 0.33, field: 0.26, car: 0.26, truck: 0.24, column: 0.13, pole: 0.13,
bulletin_board: 0.11, signboard: 0.09, streetlight: 0.09, floor: 0.06, water: 0.06, path: 0.05,
tower: 0.04, road: 0.03, land: 0.02, railing: 0.02, bannister: 0.02, van: 0.01, stairway: 0.01,
stairs: 0.01, door: 0.01, fence: 0.01, conveyor_belt: 0.01
quadrant-II:
sky: 66.12, sea: 5.81, building: 5.66, wall: 5.15, ceiling: 4.49, runway: 3.18, tree: 2.36, moun-
tain: 1.05, person: 0.96, earth: 0.86, hill: 0.80, windowpane: 0.77, grass: 0.54, car: 0.49,
skyscraper: 0.37, field: 0.25, road: 0.17, truck: 0.14, pole: 0.10, ship: 0.10, water: 0.09, esca-
lator: 0.08, box: 0.07, door: 0.07, signboard: 0.06, plant: 0.06, conveyor_belt: 0.06, streetlight:
0.04, fence: 0.02, land: 0.02, floor: 0.02, path: 0.01, stairway: 0.01, pier: 0.01, sculpture: 0.01
quadrant-III:
runway: 37.04, sea: 9.63, grass: 8.32, sky: 7.06, building: 7.02, floor: 6.17, person: 5.54,

106

earth: 3.40, road: 2.31, wall: 1.82, field: 1.48, tree: 1.33, truck: 0.95, car: 0.87, sand: 0.73,
seat: 0.72, fence: 0.66, skyscraper: 0.64, mountain: 0.50, escalator: 0.49, windowpane: 0.40,
ceiling: 0.37, case: 0.37, land: 0.32, crt_screen: 0.32, stairway: 0.25, pole: 0.15, river: 0.15,
bus: 0.14, plant: 0.13, hill: 0.12, ship: 0.11, house: 0.08, conveyor_belt: 0.07, painting: 0.07,
sculpture: 0.05, stairs: 0.04, van: 0.04, railing: 0.03, bulletin_board: 0.03, signboard: 0.03,
box: 0.01, door: 0.01, cabinet: 0.01, water: 0.01, streetlight: 0.01
quadrant-IV:
runway: 37.33, sea: 10.03, grass: 8.27, sky: 7.48, building: 7.30, floor: 6.52, earth: 3.46,
road: 3.13, person: 2.64, wall: 1.68, field: 1.63, mountain: 1.30, car: 1.22, tree: 1.14, window-
pane: 1.13, truck: 0.75, sand: 0.70, skyscraper: 0.66, land: 0.65, fence: 0.62, ceiling: 0.43,
escalator: 0.34, pole: 0.20, river: 0.17, ship: 0.13, conveyor_belt: 0.12, van: 0.10, box: 0.10,
crt_screen: 0.10, signboard: 0.07, water: 0.07, streetlight: 0.06, tower: 0.05, cabinet: 0.04,
boat: 0.04, house: 0.04, step: 0.04, door: 0.04, railing: 0.04, stairway: 0.03, bannister: 0.03,
stairs: 0.02, bus: 0.02, bag: 0.02, plant: 0.01, trade_name: 0.01, seat: 0.01, pot: 0.01
image quadrants with no context:
quadrant-I: 0/142
quadrant-II: 0/142
quadrant-III: 4/142
quadrant-IV: 6/142

Label-neighborhood

left:
sky: 28.82, runway: 15.70, building: 15.24, sea: 6.48, wall: 5.73, grass: 4.48, tree: 2.68,
earth: 2.53, mountain: 2.51, person: 2.21, floor: 1.77, windowpane: 1.75, ceiling: 1.58, road:
0.94, hill: 0.77, car: 0.73, skyscraper: 0.60, stairway: 0.59, door: 0.54, field: 0.52, truck: 0.42,
stairs: 0.33, sand: 0.28, pole: 0.26, land: 0.22, fence: 0.17, conveyor_belt: 0.13, box: 0.13,
streetlight: 0.12, water: 0.09, path: 0.07, bus: 0.06, trade_name: 0.03, flag: 0.03, signboard:
0.03, van: 0.02
up:
sky: 31.27, building: 21.66, runway: 10.20, wall: 6.73, sea: 6.31, tree: 4.28, mountain: 3.48,
grass: 3.43, ceiling: 2.14, earth: 2.01, windowpane: 1.53, hill: 0.75, floor: 0.74, land: 0.67,
field: 0.55, truck: 0.55, road: 0.53, person: 0.49, skyscraper: 0.43, door: 0.12, stairway: 0.08,
plant: 0.08, trade_name: 0.07, stairs: 0.07, box: 0.06, pole: 0.06, fence: 0.05, car: 0.05, sand:
0.04, water: 0.04, path: 0.02, flag: 0.01, crt_screen: 0.01, van: 0.01, bus: 0.01, streetlight:
0.01, tower: 0.01
right:
sky: 29.15, runway: 16.34, building: 15.61, sea: 7.12, wall: 5.69, grass: 4.43, tree: 2.83, earth:
2.53, mountain: 2.16, person: 1.80, floor: 1.71, windowpane: 1.65, ceiling: 1.57, road: 0.95,
hill: 0.72, door: 0.48, car: 0.46, field: 0.42, truck: 0.40, land: 0.36, stairs: 0.31, skyscraper:
0.29, pole: 0.28, sand: 0.25, stairway: 0.25, box: 0.18, crt_screen: 0.11, water: 0.11, van:
0.08, streetlight: 0.08, path: 0.06, bus: 0.05, plant: 0.04, flag: 0.03, trade_name: 0.03, fence:

107

0.02, signboard: 0.01
down:
runway: 35.46, sky: 15.30, building: 8.63, sea: 7.40, grass: 6.47, wall: 4.71, earth: 3.29,
floor: 2.74, windowpane: 1.71, person: 1.61, tree: 1.50, road: 1.29, ceiling: 1.28, field: 1.07,
car: 1.04, fence: 0.92, mountain: 0.77, hill: 0.72, truck: 0.67, skyscraper: 0.45, stairs: 0.33,
sand: 0.22, stairway: 0.20, van: 0.15, bus: 0.11, door: 0.10, path: 0.09, box: 0.08, pole: 0.08,
trade_name: 0.07, conveyor_belt: 0.04, signboard: 0.03, land: 0.02, flag: 0.01, water: 0.01

B.1.2 Instances

Default Instance Size

Context across the entire instance
sky: 30.30, building: 16.84, runway: 16.41, sea: 7.50, wall: 4.64, grass: 4.46, mountain:
3.24, tree: 2.24, windowpane: 1.99, floor: 1.97, road: 1.83, person: 1.34, earth: 1.27, field:
0.92, ceiling: 0.83, car: 0.71, sand: 0.61, hill: 0.45, signboard: 0.35, pole: 0.28, truck: 0.28,
skyscraper: 0.27, streetlight: 0.16, land: 0.15, stairway: 0.14, conveyor_belt: 0.11, water:
0.08, bus: 0.08, stairs: 0.07, crt_screen: 0.06, van: 0.06, path: 0.06, fence: 0.06, box: 0.05,
cabinet: 0.04, door: 0.04, bulletin_board: 0.04, tower: 0.03, painting: 0.02
Instances with no context: 29/272

Context in specific instance quadrants
quadrant-I:
sky: 38.29, building: 19.34, runway: 7.58, sea: 7.15, wall: 6.05, grass: 4.41, mountain: 3.53,
tree: 3.44, windowpane: 3.12, earth: 1.16, ceiling: 1.10, field: 0.77, road: 0.75, hill: 0.53,
sand: 0.43, person: 0.36, streetlight: 0.31, land: 0.28, tower: 0.24, pole: 0.16, signboard:
0.14, conveyor_belt: 0.13, skyscraper: 0.12, water: 0.12, cabinet: 0.11, car: 0.09, truck: 0.08,
bulletin_board: 0.08, crt_screen: 0.05, door: 0.04, trade_name: 0.02, floor: 0.01
quadrant-II:
sky: 39.35, building: 19.67, runway: 8.00, wall: 6.84, sea: 6.42, mountain: 4.73, tree: 3.19,
grass: 3.10, windowpane: 2.15, ceiling: 1.34, road: 0.95, earth: 0.75, field: 0.71, hill: 0.46,
skyscraper: 0.43, sand: 0.41, person: 0.41, signboard: 0.24, land: 0.19, water: 0.16, truck:
0.12, floor: 0.08, door: 0.05, conveyor_belt: 0.04, streetlight: 0.04, plant: 0.04, fence: 0.03,
car: 0.03, stairway: 0.03, pole: 0.02
quadrant-III:
runway: 30.48, building: 15.75, sky: 15.28, grass: 5.82, sea: 5.03, floor: 4.19, person: 3.33,
road: 2.71, wall: 2.67, mountain: 1.99, windowpane: 1.81, earth: 1.74, field: 1.37, stairway:
1.04, tree: 0.93, car: 0.90, sand: 0.87, ceiling: 0.79, truck: 0.54, signboard: 0.50, bus: 0.48,
skyscraper: 0.44, hill: 0.44, fence: 0.23, van: 0.22, box: 0.10, stairs: 0.10, painting: 0.08,
conveyor_belt: 0.08, path: 0.02, land: 0.02, bulletin_board: 0.02, streetlight: 0.01, pole: 0.01,
flag: 0.01
quadrant-IV:
runway: 30.14, sky: 14.89, building: 14.57, sea: 7.12, grass: 4.88, floor: 4.71, person: 2.58,

108

wall: 2.25, road: 2.10, mountain: 2.06, windowpane: 2.05, car: 2.01, earth: 1.71, field: 1.38,
tree: 1.24, ceiling: 0.85, sand: 0.81, truck: 0.74, pole: 0.66, signboard: 0.46, hill: 0.44,
crt_screen: 0.44, streetlight: 0.38, stairway: 0.32, stairs: 0.27, van: 0.19, path: 0.12, con-
veyor_belt: 0.12, skyscraper: 0.10, box: 0.09, bus: 0.08, cabinet: 0.07, door: 0.06, land: 0.05,
tower: 0.02, fence: 0.01, bulletin_board: 0.01, seat: 0.01

10% - Increased Instances

Context across the entire instance
sky: 29.95, runway: 17.23, building: 16.06, sea: 8.25, wall: 4.56, grass: 4.34, mountain:
2.91, tree: 2.20, floor: 2.01, windowpane: 1.97, road: 1.90, person: 1.38, earth: 1.27, field:
0.97, ceiling: 0.83, car: 0.67, sand: 0.59, hill: 0.46, signboard: 0.34, truck: 0.30, pole: 0.28,
skyscraper: 0.26, stairway: 0.19, streetlight: 0.15, land: 0.15, conveyor_belt: 0.12, bus: 0.08,
water: 0.08, fence: 0.08, van: 0.06, stairs: 0.06, crt_screen: 0.06, path: 0.05, tower: 0.05,
cabinet: 0.04, box: 0.04, bulletin_board: 0.03, door: 0.03, painting: 0.02
Instances with no context: 27/272

Context in specific instance quadrants
quadrant-I:
sky: 39.62, building: 18.70, sea: 7.81, runway: 7.26, wall: 5.96, grass: 4.11, tree: 3.38,
mountain: 3.30, windowpane: 3.00, earth: 1.10, ceiling: 1.05, field: 0.74, road: 0.72, hill:
0.53, sand: 0.42, person: 0.40, streetlight: 0.33, land: 0.24, tower: 0.22, conveyor_belt: 0.16,
signboard: 0.14, pole: 0.13, cabinet: 0.11, water: 0.10, skyscraper: 0.10, car: 0.10, truck:
0.09, bulletin_board: 0.07, door: 0.03, crt_screen: 0.03, floor: 0.02, trade_name: 0.01, fence:
0.01
quadrant-II:
sky: 40.44, building: 18.74, runway: 8.11, wall: 6.75, sea: 6.74, mountain: 4.48, tree: 3.14,
grass: 2.96, windowpane: 2.16, ceiling: 1.33, road: 0.87, earth: 0.73, field: 0.70, hill: 0.49,
skyscraper: 0.43, person: 0.40, sand: 0.38, signboard: 0.23, land: 0.19, water: 0.15, truck:
0.12, pole: 0.09, floor: 0.09, conveyor_belt: 0.08, door: 0.04, streetlight: 0.04, plant: 0.03,
stairway: 0.03, fence: 0.03, car: 0.02
quadrant-III:
runway: 33.34, building: 14.69, sky: 14.08, grass: 5.49, sea: 4.97, floor: 4.35, person: 3.36,
road: 2.80, wall: 2.49, windowpane: 1.72, earth: 1.70, field: 1.48, mountain: 1.47, stairway:
1.11, car: 1.09, tree: 0.93, sand: 0.85, ceiling: 0.80, truck: 0.50, signboard: 0.48, bus: 0.45,
skyscraper: 0.44, hill: 0.44, fence: 0.23, van: 0.19, stairs: 0.09, box: 0.09, pole: 0.08, painting:
0.08, conveyor_belt: 0.07, land: 0.04, path: 0.04, bulletin_board: 0.02, streetlight: 0.01, plant:
0.01
quadrant-IV:
runway: 32.73, building: 14.34, sky: 14.00, sea: 7.04, floor: 4.74, grass: 4.67, person: 2.38,
wall: 2.18, road: 2.13, windowpane: 1.98, car: 1.94, earth: 1.71, field: 1.58, mountain: 1.38,
tree: 1.09, sand: 0.81, ceiling: 0.79, truck: 0.78, pole: 0.51, signboard: 0.44, hill: 0.44,
crt_screen: 0.44, streetlight: 0.33, stairway: 0.32, fence: 0.22, stairs: 0.22, van: 0.17, path:

109

0.11, bus: 0.10, skyscraper: 0.09, conveyor_belt: 0.08, cabinet: 0.06, tower: 0.06, box: 0.05,
door: 0.04, land: 0.03, seat: 0.01, bulletin_board: 0.01

20% - Increased Instances

Context across the entire instance
sky: 29.38, runway: 18.51, building: 15.40, sea: 8.51, wall: 4.39, grass: 4.26, mountain:
2.62, tree: 2.14, floor: 2.11, windowpane: 1.98, road: 1.94, person: 1.63, earth: 1.24, field:
0.94, ceiling: 0.81, car: 0.65, sand: 0.55, hill: 0.46, signboard: 0.31, truck: 0.30, pole: 0.27,
skyscraper: 0.25, stairway: 0.20, streetlight: 0.15, conveyor_belt: 0.13, land: 0.13, fence: 0.10,
bus: 0.09, water: 0.07, van: 0.06, stairs: 0.06, cabinet: 0.05, tower: 0.05, crt_screen: 0.05,
path: 0.04, box: 0.03, bulletin_board: 0.03, door: 0.02, plant: 0.02, painting: 0.02
Instances with no context: 24/272

Context in specific instance quadrants
quadrant-I:
sky: 40.53, building: 18.22, sea: 8.10, runway: 6.72, wall: 5.92, grass: 4.11, tree: 3.40,
mountain: 3.13, windowpane: 2.93, earth: 1.04, ceiling: 0.99, road: 0.69, field: 0.66, hill: 0.53,
person: 0.44, sand: 0.41, pole: 0.38, streetlight: 0.35, land: 0.22, tower: 0.21, conveyor_belt:
0.20, signboard: 0.12, cabinet: 0.12, water: 0.09, car: 0.09, skyscraper: 0.09, truck: 0.08,
bulletin_board: 0.07, fence: 0.05, floor: 0.04, door: 0.03, crt_screen: 0.01, trade_name: 0.01
quadrant-II:
sky: 41.28, building: 17.89, runway: 7.46, sea: 7.08, wall: 6.69, mountain: 4.22, grass: 3.56,
tree: 3.04, windowpane: 2.16, ceiling: 1.32, road: 0.82, earth: 0.69, person: 0.68, field: 0.62,
hill: 0.52, skyscraper: 0.43, sand: 0.32, signboard: 0.22, land: 0.17, conveyor_belt: 0.16,
truck: 0.14, water: 0.13, pole: 0.10, floor: 0.09, streetlight: 0.04, plant: 0.04, door: 0.03,
cabinet: 0.03, stairway: 0.03, car: 0.02, fence: 0.02
quadrant-III:
runway: 36.43, building: 13.30, sky: 12.91, grass: 5.20, sea: 4.87, floor: 4.48, person: 3.87,
road: 2.87, wall: 2.40, windowpane: 1.68, earth: 1.63, field: 1.46, mountain: 1.17, car: 1.16,
stairway: 0.93, tree: 0.90, ceiling: 0.79, sand: 0.78, truck: 0.49, signboard: 0.46, skyscraper:
0.43, hill: 0.43, bus: 0.43, fence: 0.20, van: 0.16, pole: 0.09, stairs: 0.08, box: 0.08, painting:
0.08, conveyor_belt: 0.06, plant: 0.05, land: 0.05, path: 0.03, bulletin_board: 0.02, streetlight:
0.02, ship: 0.01
quadrant-IV:
runway: 35.05, building: 13.40, sky: 13.02, sea: 7.27, floor: 4.74, grass: 4.45, person: 2.75,
road: 2.36, wall: 2.08, windowpane: 1.94, car: 1.78, earth: 1.64, field: 1.63, mountain: 1.15,
tree: 1.01, sand: 0.79, truck: 0.73, ceiling: 0.71, hill: 0.43, crt_screen: 0.43, pole: 0.42,
signboard: 0.41, fence: 0.31, stairway: 0.29, streetlight: 0.26, stairs: 0.17, van: 0.15, bus:
0.13, path: 0.10, skyscraper: 0.09, conveyor_belt: 0.06, tower: 0.06, cabinet: 0.05, door: 0.04,
box: 0.03, land: 0.03, column: 0.02, ship: 0.01, seat: 0.01

110

30% - Increased Instances

Context across the entire instance
sky: 29.02, runway: 19.15, building: 14.71, sea: 9.14, wall: 4.26, grass: 4.16, mountain:
2.42, floor: 2.20, tree: 2.18, windowpane: 1.98, road: 1.96, person: 1.69, earth: 1.25, field:
1.01, ceiling: 0.78, car: 0.62, sand: 0.52, hill: 0.47, truck: 0.31, signboard: 0.28, pole: 0.27,
skyscraper: 0.25, stairway: 0.22, conveyor_belt: 0.14, streetlight: 0.14, land: 0.12, fence: 0.10,
bus: 0.09, cabinet: 0.07, water: 0.06, stairs: 0.06, tower: 0.05, crt_screen: 0.05, van: 0.05,
path: 0.04, plant: 0.04, box: 0.03, bulletin_board: 0.02, ship: 0.02, door: 0.02, painting: 0.02
Instances with no context: 21/272

Context in specific instance quadrants
quadrant-I:
sky: 41.21, building: 17.65, sea: 8.74, runway: 6.55, wall: 5.86, grass: 3.87, tree: 3.49,
mountain: 2.98, windowpane: 2.87, earth: 1.00, ceiling: 0.96, road: 0.67, field: 0.58, hill: 0.54,
person: 0.52, sand: 0.41, pole: 0.38, streetlight: 0.33, conveyor_belt: 0.22, tower: 0.21, land:
0.20, cabinet: 0.13, signboard: 0.11, water: 0.09, truck: 0.08, skyscraper: 0.08, car: 0.07,
bulletin_board: 0.07, fence: 0.05, floor: 0.04, door: 0.02, trade_name: 0.01, crt_screen: 0.01
quadrant-II:
sky: 42.12, building: 16.99, sea: 7.42, runway: 7.00, wall: 6.63, mountain: 3.98, grass: 3.61,
tree: 3.52, windowpane: 2.09, ceiling: 1.32, road: 0.77, person: 0.72, earth: 0.62, field: 0.61,
hill: 0.54, skyscraper: 0.42, sand: 0.27, conveyor_belt: 0.21, signboard: 0.20, land: 0.16,
truck: 0.15, pole: 0.12, water: 0.12, floor: 0.09, cabinet: 0.08, plant: 0.06, streetlight: 0.04,
stairway: 0.04, crt_screen: 0.04, door: 0.03, car: 0.02, fence: 0.02
quadrant-III:
runway: 37.60, building: 12.54, sky: 12.14, sea: 5.24, grass: 4.97, floor: 4.63, person: 3.88,
road: 2.92, wall: 2.44, earth: 1.70, windowpane: 1.66, field: 1.63, car: 1.22, mountain: 1.00,
stairway: 0.94, tree: 0.86, sand: 0.74, ceiling: 0.69, truck: 0.54, skyscraper: 0.43, hill: 0.43,
signboard: 0.41, bus: 0.40, fence: 0.19, van: 0.14, pole: 0.12, plant: 0.09, painting: 0.07,
stairs: 0.07, box: 0.07, conveyor_belt: 0.05, ship: 0.05, land: 0.05, path: 0.03, bulletin_board:
0.02, streetlight: 0.01, door: 0.01, cabinet: 0.01
quadrant-IV:
runway: 37.15, building: 12.39, sky: 11.94, sea: 7.87, floor: 4.73, grass: 4.35, person: 2.79,
road: 2.47, wall: 1.98, windowpane: 1.90, earth: 1.80, field: 1.70, car: 1.60, mountain: 1.05,
tree: 0.94, sand: 0.78, truck: 0.67, ceiling: 0.63, hill: 0.42, crt_screen: 0.41, pole: 0.40,
signboard: 0.37, stairway: 0.27, fence: 0.23, stairs: 0.18, streetlight: 0.18, bus: 0.15, van:
0.12, path: 0.09, skyscraper: 0.09, column: 0.06, ship: 0.06, conveyor_belt: 0.05, tower: 0.05,
cabinet: 0.05, box: 0.03, door: 0.02, land: 0.02, seat: 0.01

40% - Increased Instances

Context across the entire instance
sky: 28.72, runway: 19.65, building: 14.09, sea: 9.84, wall: 4.15, grass: 4.11, floor: 2.28,

111

mountain: 2.27, tree: 2.15, windowpane: 1.98, road: 1.93, person: 1.76, earth: 1.19, field:
0.98, ceiling: 0.78, car: 0.62, sand: 0.51, hill: 0.47, truck: 0.31, pole: 0.31, signboard: 0.26,
skyscraper: 0.25, stairway: 0.23, conveyor_belt: 0.14, streetlight: 0.12, land: 0.11, fence: 0.09,
bus: 0.08, cabinet: 0.08, tower: 0.07, crt_screen: 0.07, water: 0.06, stairs: 0.05, plant: 0.05,
van: 0.05, path: 0.03, ship: 0.03, box: 0.03, column: 0.02, bulletin_board: 0.02, painting: 0.02,
door: 0.02
Instances with no context: 19/272

Context in specific instance quadrants
quadrant-I:
sky: 41.81, building: 16.96, sea: 9.05, runway: 6.33, wall: 6.18, grass: 3.77, tree: 3.45,
mountain: 2.87, windowpane: 2.79, earth: 1.00, ceiling: 0.97, person: 0.65, road: 0.64,
hill: 0.54, field: 0.47, pole: 0.42, sand: 0.40, streetlight: 0.31, tower: 0.28, conveyor_belt:
0.21, land: 0.18, signboard: 0.10, cabinet: 0.10, skyscraper: 0.09, water: 0.08, truck: 0.08,
bulletin_board: 0.07, car: 0.06, floor: 0.05, fence: 0.04, door: 0.02, trade_name: 0.01
quadrant-II:
sky: 42.72, building: 16.24, sea: 8.11, runway: 6.64, wall: 6.53, grass: 3.97, mountain: 3.76,
tree: 3.42, windowpane: 2.00, ceiling: 1.31, person: 0.83, road: 0.73, field: 0.56, hill: 0.54,
earth: 0.54, skyscraper: 0.41, sand: 0.23, conveyor_belt: 0.21, signboard: 0.19, pole: 0.15,
truck: 0.14, land: 0.14, cabinet: 0.12, water: 0.11, crt_screen: 0.08, floor: 0.07, plant: 0.07,
stairway: 0.05, streetlight: 0.04, door: 0.02, car: 0.02, fence: 0.02
quadrant-III:
runway: 38.91, building: 12.04, sky: 11.42, sea: 5.22, grass: 4.86, floor: 4.80, person: 3.81,
road: 2.95, wall: 2.47, field: 1.72, windowpane: 1.62, earth: 1.62, car: 1.32, stairway: 0.91,
mountain: 0.88, tree: 0.84, sand: 0.72, ceiling: 0.64, truck: 0.60, skyscraper: 0.43, hill: 0.43,
signboard: 0.38, bus: 0.37, fence: 0.19, pole: 0.16, van: 0.14, plant: 0.12, ship: 0.07, painting:
0.06, stairs: 0.06, box: 0.06, conveyor_belt: 0.06, land: 0.05, path: 0.03, crt_screen: 0.02,
bulletin_board: 0.02, door: 0.01, streetlight: 0.01, cabinet: 0.01
quadrant-IV:
runway: 38.23, building: 11.69, sky: 11.47, sea: 8.22, floor: 4.81, grass: 4.42, person: 2.74,
road: 2.54, windowpane: 1.92, wall: 1.91, earth: 1.75, field: 1.73, car: 1.54, mountain: 1.00,
tree: 0.88, sand: 0.78, truck: 0.63, ceiling: 0.59, pole: 0.42, hill: 0.42, crt_screen: 0.38,
signboard: 0.34, stairway: 0.27, fence: 0.19, stairs: 0.18, bus: 0.15, streetlight: 0.14, van:
0.10, skyscraper: 0.10, column: 0.09, path: 0.08, ship: 0.08, tower: 0.05, conveyor_belt: 0.05,
cabinet: 0.04, box: 0.04, escalator: 0.02, door: 0.02, land: 0.02, seat: 0.01

112

B.2 COCO - Things and Stuff

B.2.1 Images

Semantic Context

Context across the entire image
sky-other: 35.42, clouds: 16.03, road: 8.81, grass: 5.07, pavement: 4.97, tree: 3.47, building-
other: 3.38, fog: 3.18, mountain: 2.40, ground-other: 2.20, sea: 1.55, person: 1.40, ceiling-
other: 0.80, truck: 0.78, floor-other: 0.76, metal: 0.71, dirt: 0.69, fence: 0.63, wall-other: 0.57,
window-other: 0.56, sand: 0.51, hill: 0.38, snow: 0.32, bush: 0.31, wall-concrete: 0.31, plant-
other: 0.24, car: 0.24, water-other: 0.22, wall-panel: 0.21, solid-other: 0.19, skyscraper: 0.19,
river: 0.16, chair: 0.15, bus: 0.14, floor-tile: 0.14, bridge: 0.14, platform: 0.12, table: 0.12,
structural-other: 0.11, gravel: 0.11, roof: 0.11, stairs: 0.11, house: 0.09, branch: 0.09, rock:
0.08, railing: 0.08, boat: 0.07, banner: 0.07, floor-wood: 0.07, textile-other: 0.06, other: 1.44
images with no context: 9/3077

Context in specific image quadrants
quadrant-I:
sky-other: 49.05, clouds: 22.22, fog: 4.91, tree: 3.87, building-other: 3.71, mountain: 2.18,
ceiling-other: 1.46, road: 1.40, grass: 1.33, person: 0.97, pavement: 0.95, wall-other: 0.74,
window-other: 0.74, sea: 0.69, metal: 0.59, ground-other: 0.55, hill: 0.41, wall-concrete: 0.30,
truck: 0.27, wall-panel: 0.26, fence: 0.23, skyscraper: 0.20, solid-other: 0.18, roof: 0.17, bush:
0.15, floor-other: 0.13, table: 0.12, sand: 0.11, bus: 0.11, structural-other: 0.10, banner: 0.09,
plant-other: 0.09, water-other: 0.08, chair: 0.08, dirt: 0.07, river: 0.07, window-blind: 0.07,
branch: 0.06, textile-other: 0.06, wall-brick: 0.05, paper: 0.05, house: 0.05, tent: 0.05, plastic:
0.04, stairs: 0.04, bridge: 0.04, light: 0.04, floor-tile: 0.04, snow: 0.04, furniture-other: 0.04,
other: 0.77
quadrant-II:
sky-other: 49.16, clouds: 22.22, fog: 4.84, tree: 3.92, building-other: 3.69, mountain: 2.22,
road: 1.63, ceiling-other: 1.45, grass: 1.31, pavement: 1.06, person: 0.80, wall-other: 0.73,
window-other: 0.68, sea: 0.62, ground-other: 0.61, hill: 0.44, metal: 0.42, wall-concrete: 0.32,
truck: 0.32, wall-panel: 0.30, fence: 0.20, skyscraper: 0.20, dirt: 0.16, bush: 0.15, solid-other:
0.14, floor-other: 0.14, roof: 0.14, water-other: 0.12, sand: 0.11, table: 0.10, structural-other:
0.09, house: 0.09, car: 0.08, river: 0.08, banner: 0.08, plant-other: 0.08, textile-other: 0.07,
bus: 0.07, wall-brick: 0.06, light: 0.06, bridge: 0.06, branch: 0.06, floor-tile: 0.05, refrigerator:
0.05, paper: 0.05, stairs: 0.05, snow: 0.04, cloth: 0.03, window-blind: 0.03, tent: 0.03, other:
0.60
quadrant-III:
sky-other: 20.78, road: 17.14, clouds: 9.23, pavement: 9.15, grass: 9.12, ground-other: 4.06,
building-other: 3.00, tree: 2.98, mountain: 2.54, sea: 2.40, person: 1.91, truck: 1.45, fog:
1.42, floor-other: 1.35, dirt: 1.35, fence: 1.02, sand: 0.89, metal: 0.89, snow: 0.66, bush:
0.47, wall-other: 0.46, car: 0.40, plant-other: 0.38, window-other: 0.37, water-other: 0.37, hill:

113

0.36, wall-concrete: 0.31, river: 0.26, platform: 0.24, gravel: 0.24, floor-tile: 0.23, bridge: 0.23,
solid-other: 0.23, chair: 0.18, stairs: 0.16, rock: 0.16, railing: 0.15, bus: 0.14, wall-panel: 0.14,
floor-wood: 0.13, table: 0.13, skyscraper: 0.13, ceiling-other: 0.13, branch: 0.12, structural-
other: 0.12, boat: 0.12, house: 0.11, cage: 0.10, straw: 0.10, roof: 0.09, other: 1.91
quadrant-IV:
sky-other: 20.73, road: 16.59, clouds: 9.39, grass: 9.24, pavement: 9.12, ground-other: 3.86,
building-other: 3.17, tree: 2.95, mountain: 2.57, sea: 2.49, person: 2.25, floor-other: 1.44,
fog: 1.41, dirt: 1.30, truck: 1.26, fence: 1.08, metal: 1.08, sand: 0.91, snow: 0.57, bush: 0.48,
plant-other: 0.43, window-other: 0.41, wall-other: 0.39, car: 0.34, water-other: 0.33, hill: 0.31,
wall-concrete: 0.30, river: 0.26, solid-other: 0.24, chair: 0.24, bridge: 0.23, floor-tile: 0.22,
gravel: 0.21, bus: 0.21, skyscraper: 0.20, platform: 0.20, stairs: 0.20, structural-other: 0.16,
rock: 0.14, ceiling-other: 0.13, house: 0.13, table: 0.13, wall-panel: 0.12, floor-wood: 0.12,
branch: 0.11, railing: 0.11, suitcase: 0.11, straw: 0.10, boat: 0.09, cage: 0.09, other: 1.84
image quadrants with no context:
quadrant-I: 20/3077
quadrant-II: 20/3077
quadrant-III: 18/3077
quadrant-IV: 16/3077

Label-neighborhood

left:
sky-other: 35.06, clouds: 15.57, road: 7.77, building-other: 5.41, tree: 4.69, grass: 4.22,
pavement: 4.15, fog: 3.01, person: 2.85, mountain: 2.42, ground-other: 1.93, metal: 1.69,
sea: 1.23, window-other: 0.79, fence: 0.70, ceiling-other: 0.62, floor-other: 0.59, dirt: 0.57,
wall-other: 0.56, hill: 0.51, truck: 0.45, sand: 0.35, bush: 0.30, wall-concrete: 0.30, solid-other:
0.24, snow: 0.23, wall-panel: 0.22, plant-other: 0.20, water-other: 0.19, car: 0.16, river: 0.15,
table: 0.14, stairs: 0.14, house: 0.13, platform: 0.10, banner: 0.10, chair: 0.10, structural-
other: 0.10, floor-tile: 0.10, bridge: 0.09, bus: 0.07, paper: 0.06, plastic: 0.06, textile-other:
0.06, skyscraper: 0.06, roof: 0.06, branch: 0.06, railing: 0.06, wall-brick: 0.05, refrigerator:
0.05, other: 0.90
up:
sky-other: 38.43, clouds: 17.24, building-other: 7.45, tree: 6.29, road: 4.68, fog: 3.36, grass:
3.21, mountain: 2.81, pavement: 2.38, ground-other: 1.46, sea: 1.25, metal: 1.19, person:
0.92, window-other: 0.87, ceiling-other: 0.86, wall-other: 0.76, hill: 0.63, fence: 0.53, wall-
concrete: 0.41, floor-other: 0.34, wall-panel: 0.34, plant-other: 0.29, bush: 0.29, dirt: 0.25,
sand: 0.23, solid-other: 0.21, water-other: 0.20, truck: 0.17, house: 0.15, snow: 0.15, river:
0.14, table: 0.14, banner: 0.13, bridge: 0.11, structural-other: 0.10, skyscraper: 0.09, roof:
0.09, stairs: 0.08, paper: 0.08, wall-brick: 0.07, platform: 0.07, chair: 0.06, textile-other: 0.06,
floor-tile: 0.06, straw: 0.06, branch: 0.05, car: 0.05, bus: 0.05, refrigerator: 0.04, boat: 0.04,
other: 0.71
right:
sky-other: 34.61, clouds: 15.64, road: 7.14, building-other: 5.99, tree: 4.69, grass: 4.33,

114

pavement: 3.87, person: 3.31, fog: 2.99, mountain: 2.56, ground-other: 1.84, metal: 1.57,
sea: 1.19, window-other: 0.82, fence: 0.70, ceiling-other: 0.66, floor-other: 0.61, wall-other:
0.59, hill: 0.54, dirt: 0.45, truck: 0.45, wall-concrete: 0.38, sand: 0.33, wall-panel: 0.27, plant-
other: 0.26, solid-other: 0.26, bush: 0.25, snow: 0.22, stairs: 0.20, water-other: 0.16, river:
0.16, table: 0.14, house: 0.14, car: 0.12, chair: 0.12, structural-other: 0.11, platform: 0.10,
bridge: 0.09, floor-tile: 0.09, bus: 0.09, banner: 0.09, skyscraper: 0.08, textile-other: 0.07,
straw: 0.06, playingfield: 0.06, paper: 0.06, kite: 0.06, dining table: 0.05, floor-wood: 0.05,
railing: 0.05, other: 0.91
down:
sky-other: 27.97, road: 13.67, clouds: 12.06, pavement: 6.94, grass: 6.92, building-other:
4.25, tree: 3.44, ground-other: 3.14, fog: 2.21, person: 2.05, mountain: 2.03, metal: 2.01,
sea: 1.26, floor-other: 0.99, fence: 0.99, dirt: 0.92, truck: 0.86, window-other: 0.70, wall-other:
0.49, sand: 0.47, hill: 0.44, snow: 0.40, bush: 0.34, ceiling-other: 0.32, wall-concrete: 0.31,
solid-other: 0.30, plant-other: 0.30, car: 0.26, river: 0.23, stairs: 0.23, platform: 0.21, water-
other: 0.18, table: 0.16, chair: 0.14, bridge: 0.14, house: 0.14, wall-panel: 0.13, bus: 0.12,
floor-tile: 0.11, structural-other: 0.11, gravel: 0.10, straw: 0.09, playingfield: 0.09, cage: 0.09,
railing: 0.08, banner: 0.08, floor-wood: 0.07, dining table: 0.06, plastic: 0.06, textile-other:
0.06, other: 0.91

B.2.2 Instances

Default Instance Size

Context across the entire instance
sky-other: 32.64, clouds: 16.24, building-other: 9.13, road: 7.17, tree: 5.09, grass: 4.07, fog:
3.61, pavement: 3.35, mountain: 2.53, ground-other: 1.56, person: 1.30, floor-other: 1.09,
sea: 1.04, metal: 1.04, hill: 1.00, window-other: 0.97, ceiling-other: 0.84, fence: 0.65, wall-
other: 0.65, truck: 0.63, sand: 0.60, dirt: 0.48, wall-concrete: 0.31, plant-other: 0.23, bush:
0.23, platform: 0.22, solid-other: 0.21, wall-panel: 0.20, structural-other: 0.16, water-other:
0.15, floor-tile: 0.15, snow: 0.14, river: 0.14, car: 0.12, bridge: 0.12, roof: 0.11, banner: 0.11,
bus: 0.11, house: 0.10, skyscraper: 0.10, straw: 0.10, stairs: 0.10, table: 0.09, playingfield:
0.07, chair: 0.07, wood: 0.06, light: 0.05, railing: 0.05, cage: 0.05, floor-wood: 0.05, other:
0.74
Instances with no context: 29/5270

Context in specific instance quadrants
quadrant-I:
sky-other: 38.22, clouds: 18.94, building-other: 10.32, tree: 6.16, fog: 4.25, road: 2.95, moun-
tain: 2.80, grass: 2.39, hill: 1.19, ceiling-other: 1.16, window-other: 1.07, pavement: 1.06,
sea: 1.01, metal: 0.98, wall-other: 0.79, person: 0.74, ground-other: 0.66, floor-other: 0.56,
sand: 0.48, wall-concrete: 0.43, fence: 0.39, wall-panel: 0.26, plant-other: 0.25, solid-other:
0.18, structural-other: 0.18, truck: 0.16, bush: 0.15, roof: 0.15, dirt: 0.14, water-other: 0.13,
banner: 0.12, river: 0.10, skyscraper: 0.10, bridge: 0.09, house: 0.09, table: 0.08, floor-tile:

115

0.08, platform: 0.07, straw: 0.07, light: 0.06, wood: 0.06, window-blind: 0.06, wall-brick: 0.05,
bus: 0.05, branch: 0.04, snow: 0.04, chair: 0.04, paper: 0.04, wall-wood: 0.04, textile-other:
0.03, other: 0.54
quadrant-II:
sky-other: 38.19, clouds: 18.75, building-other: 9.97, tree: 6.29, fog: 4.27, road: 3.25, moun-
tain: 2.61, grass: 2.45, pavement: 1.25, hill: 1.19, ceiling-other: 1.13, window-other: 1.02,
sea: 1.01, metal: 0.85, wall-other: 0.80, person: 0.72, ground-other: 0.71, floor-other: 0.59,
sand: 0.51, fence: 0.38, wall-concrete: 0.35, wall-panel: 0.26, plant-other: 0.23, bush: 0.21,
truck: 0.19, platform: 0.18, banner: 0.17, structural-other: 0.17, solid-other: 0.16, dirt: 0.16,
skyscraper: 0.15, roof: 0.14, water-other: 0.14, river: 0.13, bridge: 0.11, house: 0.11, light:
0.08, table: 0.08, car: 0.07, wood: 0.07, paper: 0.05, snow: 0.05, floor-tile: 0.05, cage: 0.04,
bus: 0.04, window-blind: 0.04, refrigerator: 0.04, wall-wood: 0.04, textile-other: 0.03, railing:
0.03, other: 0.49
quadrant-III:
sky-other: 24.62, road: 13.66, clouds: 12.18, building-other: 7.47, pavement: 6.54, grass:
6.29, tree: 3.84, ground-other: 2.94, fog: 2.57, mountain: 1.99, person: 1.94, floor-other: 1.64,
metal: 1.51, truck: 1.34, sea: 1.06, dirt: 0.98, fence: 0.97, window-other: 0.91, sand: 0.81, hill:
0.64, wall-other: 0.55, ceiling-other: 0.47, platform: 0.37, bush: 0.32, snow: 0.30, solid-other:
0.27, wall-concrete: 0.26, river: 0.21, plant-other: 0.21, car: 0.20, water-other: 0.17, stairs:
0.17, bus: 0.15, floor-tile: 0.15, wall-panel: 0.14, bridge: 0.14, structural-other: 0.13, straw:
0.12, gravel: 0.11, house: 0.10, table: 0.10, roof: 0.08, cage: 0.08, playingfield: 0.07, banner:
0.07, railing: 0.07, chair: 0.07, wood: 0.07, floor-wood: 0.06, light: 0.06, other: 0.84
quadrant-IV:
sky-other: 24.52, road: 13.30, clouds: 12.04, building-other: 8.38, pavement: 6.40, grass:
6.40, tree: 3.64, ground-other: 2.69, fog: 2.49, person: 2.18, mountain: 2.05, floor-other: 1.67,
metal: 1.61, truck: 1.20, sea: 1.10, fence: 0.98, window-other: 0.93, dirt: 0.89, sand: 0.74,
hill: 0.66, wall-other: 0.51, ceiling-other: 0.50, snow: 0.28, solid-other: 0.27, wall-concrete:
0.26, platform: 0.26, bush: 0.25, stairs: 0.24, plant-other: 0.24, car: 0.21, straw: 0.21, river:
0.20, floor-tile: 0.16, structural-other: 0.15, water-other: 0.14, bridge: 0.13, wall-panel: 0.12,
bus: 0.11, house: 0.11, gravel: 0.10, playingfield: 0.10, table: 0.09, chair: 0.09, banner: 0.08,
railing: 0.08, floor-wood: 0.08, skyscraper: 0.08, textile-other: 0.07, cage: 0.07, roof: 0.06,
other: 0.88

10% - Increased Instances

Context across the entire instance
sky-other: 32.54, clouds: 16.19, building-other: 8.89, road: 7.56, tree: 4.93, grass: 4.08, fog:
3.59, pavement: 3.52, mountain: 2.44, ground-other: 1.62, person: 1.21, floor-other: 1.09,
metal: 1.07, sea: 1.04, window-other: 0.98, hill: 0.97, ceiling-other: 0.84, fence: 0.65, truck:
0.65, wall-other: 0.64, sand: 0.61, dirt: 0.49, wall-concrete: 0.32, plant-other: 0.23, bush: 0.23,
platform: 0.22, solid-other: 0.21, wall-panel: 0.20, structural-other: 0.17, snow: 0.15, floor-tile:
0.15, water-other: 0.15, river: 0.15, car: 0.12, bridge: 0.12, roof: 0.11, bus: 0.11, banner:
0.10, skyscraper: 0.10, straw: 0.10, house: 0.10, stairs: 0.10, table: 0.09, playingfield: 0.08,

116

chair: 0.07, wood: 0.06, light: 0.05, railing: 0.05, cage: 0.05, floor-wood: 0.05, other: 0.75
Instances with no context: 29/5270

Context in specific instance quadrants
quadrant-I:
sky-other: 38.64, clouds: 19.14, building-other: 10.11, tree: 6.04, fog: 4.35, road: 2.83, moun-
tain: 2.72, grass: 2.35, ceiling-other: 1.17, hill: 1.15, window-other: 1.08, pavement: 1.03, sea:
1.02, metal: 0.97, wall-other: 0.79, person: 0.66, ground-other: 0.65, floor-other: 0.55, sand:
0.47, wall-concrete: 0.41, fence: 0.38, wall-panel: 0.26, plant-other: 0.24, solid-other: 0.18,
structural-other: 0.18, truck: 0.16, roof: 0.16, dirt: 0.16, bush: 0.14, water-other: 0.13, banner:
0.12, skyscraper: 0.12, river: 0.11, house: 0.09, bridge: 0.09, floor-tile: 0.08, table: 0.08,
straw: 0.07, light: 0.07, platform: 0.07, wood: 0.06, window-blind: 0.06, bus: 0.05, wall-brick:
0.05, snow: 0.04, chair: 0.04, paper: 0.04, branch: 0.04, wall-wood: 0.04, textile-other: 0.03,
other: 0.51
quadrant-II:
sky-other: 38.64, clouds: 18.95, building-other: 9.79, tree: 6.22, fog: 4.32, road: 3.12, moun-
tain: 2.57, grass: 2.39, pavement: 1.20, hill: 1.17, ceiling-other: 1.15, window-other: 1.01,
sea: 1.00, metal: 0.86, wall-other: 0.80, ground-other: 0.71, person: 0.65, floor-other: 0.58,
sand: 0.51, fence: 0.37, wall-concrete: 0.36, wall-panel: 0.26, plant-other: 0.22, bush: 0.21,
truck: 0.19, structural-other: 0.17, banner: 0.16, solid-other: 0.16, platform: 0.16, dirt: 0.16,
skyscraper: 0.15, water-other: 0.14, roof: 0.14, river: 0.13, bridge: 0.12, house: 0.11, light:
0.08, table: 0.08, wood: 0.07, car: 0.06, paper: 0.05, floor-tile: 0.05, snow: 0.05, window-blind:
0.04, refrigerator: 0.04, cage: 0.04, bus: 0.04, wall-wood: 0.04, wall-brick: 0.03, textile-other:
0.03, other: 0.48
quadrant-III:
sky-other: 24.22, road: 14.46, clouds: 11.97, building-other: 7.20, pavement: 6.84, grass:
6.33, tree: 3.59, ground-other: 3.03, fog: 2.48, mountain: 1.91, person: 1.83, floor-other: 1.67,
metal: 1.57, truck: 1.33, sea: 1.05, dirt: 0.99, fence: 0.96, window-other: 0.90, sand: 0.81,
hill: 0.62, wall-other: 0.55, ceiling-other: 0.45, platform: 0.38, bush: 0.33, snow: 0.32, wall-
concrete: 0.28, solid-other: 0.28, river: 0.23, plant-other: 0.21, car: 0.21, water-other: 0.18,
bus: 0.18, stairs: 0.16, floor-tile: 0.15, bridge: 0.15, wall-panel: 0.14, structural-other: 0.14,
straw: 0.12, gravel: 0.11, table: 0.09, house: 0.09, roof: 0.08, cage: 0.08, chair: 0.08, railing:
0.07, playingfield: 0.07, floor-wood: 0.06, wood: 0.06, banner: 0.06, light: 0.06, other: 0.86
quadrant-IV:
sky-other: 24.02, road: 14.09, clouds: 11.84, building-other: 8.08, pavement: 6.65, grass:
6.40, tree: 3.43, ground-other: 2.82, fog: 2.44, person: 2.08, mountain: 2.00, metal: 1.69,
floor-other: 1.68, truck: 1.22, sea: 1.10, fence: 1.03, window-other: 0.95, dirt: 0.91, sand:
0.76, hill: 0.66, wall-other: 0.52, ceiling-other: 0.48, snow: 0.29, wall-concrete: 0.28, solid-
other: 0.27, platform: 0.26, bush: 0.25, plant-other: 0.24, stairs: 0.23, river: 0.22, straw: 0.21,
car: 0.21, floor-tile: 0.17, structural-other: 0.15, water-other: 0.14, bridge: 0.13, wall-panel:
0.11, bus: 0.11, house: 0.11, gravel: 0.10, playingfield: 0.10, table: 0.09, chair: 0.09, railing:
0.08, floor-wood: 0.08, roof: 0.08, textile-other: 0.08, banner: 0.07, cage: 0.07, skyscraper:

117

0.07, other: 0.90

20% - Increased Instances

Context across the entire instance
sky-other: 32.49, clouds: 16.16, building-other: 8.60, road: 7.91, tree: 4.76, grass: 4.12,
pavement: 3.68, fog: 3.58, mountain: 2.38, ground-other: 1.68, person: 1.15, floor-other:
1.10, metal: 1.07, sea: 1.04, window-other: 0.98, hill: 0.94, ceiling-other: 0.85, truck: 0.66,
fence: 0.65, wall-other: 0.64, sand: 0.62, dirt: 0.50, wall-concrete: 0.32, bush: 0.23, plant-
other: 0.23, platform: 0.22, solid-other: 0.21, wall-panel: 0.21, structural-other: 0.19, river:
0.16, snow: 0.16, floor-tile: 0.15, water-other: 0.15, car: 0.12, bridge: 0.12, roof: 0.11, bus:
0.11, skyscraper: 0.11, straw: 0.10, banner: 0.10, stairs: 0.10, house: 0.10, table: 0.09,
playingfield: 0.08, chair: 0.07, wood: 0.06, light: 0.06, railing: 0.05, gravel: 0.05, cage: 0.05,
other: 0.75
Instances with no context: 28/5270

Context in specific instance quadrants
quadrant-I:
sky-other: 39.07, clouds: 19.33, building-other: 9.89, tree: 5.94, fog: 4.41, road: 2.75, moun-
tain: 2.67, grass: 2.25, ceiling-other: 1.19, hill: 1.13, window-other: 1.08, sea: 1.02, pavement:
1.00, metal: 1.00, wall-other: 0.78, ground-other: 0.65, person: 0.62, floor-other: 0.54, sand:
0.46, wall-concrete: 0.40, fence: 0.36, wall-panel: 0.26, plant-other: 0.24, structural-other:
0.19, solid-other: 0.18, roof: 0.17, dirt: 0.15, bush: 0.15, truck: 0.14, water-other: 0.13,
skyscraper: 0.12, banner: 0.12, river: 0.11, house: 0.09, bridge: 0.09, floor-tile: 0.08, table:
0.08, straw: 0.07, light: 0.07, wood: 0.07, platform: 0.06, window-blind: 0.06, bus: 0.06, wall-
brick: 0.04, paper: 0.04, chair: 0.04, wall-wood: 0.04, snow: 0.04, branch: 0.04, textile-other:
0.03, other: 0.51
quadrant-II:
sky-other: 39.09, clouds: 19.20, building-other: 9.61, tree: 6.09, fog: 4.40, road: 2.98, moun-
tain: 2.53, grass: 2.30, ceiling-other: 1.18, hill: 1.16, pavement: 1.14, window-other: 1.01,
sea: 0.99, metal: 0.85, wall-other: 0.81, ground-other: 0.71, person: 0.61, floor-other: 0.56,
sand: 0.49, wall-concrete: 0.36, fence: 0.36, wall-panel: 0.27, plant-other: 0.21, bush: 0.19,
truck: 0.19, skyscraper: 0.17, solid-other: 0.16, dirt: 0.16, banner: 0.15, structural-other: 0.15,
platform: 0.15, water-other: 0.15, roof: 0.14, river: 0.13, bridge: 0.12, house: 0.11, light: 0.08,
table: 0.07, car: 0.06, wood: 0.06, paper: 0.05, floor-tile: 0.05, snow: 0.04, window-blind:
0.04, refrigerator: 0.04, cage: 0.04, bus: 0.04, wall-wood: 0.04, wall-brick: 0.04, railing: 0.03,
other: 0.47
quadrant-III:
sky-other: 23.88, road: 15.21, clouds: 11.79, pavement: 7.13, building-other: 6.86, grass:
6.46, tree: 3.37, ground-other: 3.14, fog: 2.39, mountain: 1.87, person: 1.76, floor-other: 1.68,
metal: 1.51, truck: 1.33, sea: 1.04, dirt: 1.02, fence: 0.97, window-other: 0.90, sand: 0.81,
hill: 0.58, wall-other: 0.56, ceiling-other: 0.44, platform: 0.40, snow: 0.34, bush: 0.33, wall-
concrete: 0.28, solid-other: 0.28, river: 0.24, plant-other: 0.22, car: 0.21, water-other: 0.18,

118

bus: 0.17, bridge: 0.16, floor-tile: 0.15, stairs: 0.15, wall-panel: 0.15, structural-other: 0.13,
gravel: 0.13, straw: 0.12, table: 0.09, house: 0.08, railing: 0.08, cage: 0.08, chair: 0.08, roof:
0.08, playingfield: 0.07, floor-wood: 0.07, banner: 0.06, wood: 0.06, light: 0.06, other: 0.87
quadrant-IV:
sky-other: 23.57, road: 14.83, clouds: 11.64, building-other: 7.75, pavement: 6.94, grass:
6.53, tree: 3.20, ground-other: 2.94, fog: 2.39, person: 2.06, mountain: 1.95, floor-other: 1.70,
metal: 1.64, truck: 1.24, sea: 1.09, fence: 1.03, window-other: 0.94, dirt: 0.93, sand: 0.79, hill:
0.62, wall-other: 0.51, ceiling-other: 0.46, snow: 0.30, wall-concrete: 0.28, solid-other: 0.27,
platform: 0.26, bush: 0.25, river: 0.24, plant-other: 0.24, stairs: 0.23, car: 0.21, straw: 0.21,
floor-tile: 0.17, water-other: 0.16, structural-other: 0.15, bridge: 0.13, bus: 0.12, wall-panel:
0.12, house: 0.10, gravel: 0.10, playingfield: 0.10, chair: 0.09, table: 0.09, railing: 0.08, floor-
wood: 0.08, textile-other: 0.08, banner: 0.07, roof: 0.07, cage: 0.07, skyscraper: 0.07, other:
0.92

30% - Increased Instances

Context across the entire instance
sky-other: 32.47, clouds: 16.18, building-other: 8.34, road: 8.14, tree: 4.61, grass: 4.19,
pavement: 3.79, fog: 3.57, mountain: 2.33, ground-other: 1.73, person: 1.13, floor-other:
1.11, metal: 1.05, sea: 1.04, window-other: 0.97, hill: 0.91, ceiling-other: 0.85, truck: 0.68,
fence: 0.64, wall-other: 0.64, sand: 0.62, dirt: 0.51, wall-concrete: 0.32, bush: 0.23, plant-
other: 0.23, platform: 0.22, solid-other: 0.21, wall-panel: 0.21, structural-other: 0.19, river:
0.17, snow: 0.16, floor-tile: 0.15, water-other: 0.15, car: 0.13, bridge: 0.12, playingfield: 0.12,
bus: 0.11, roof: 0.11, skyscraper: 0.11, straw: 0.10, banner: 0.10, stairs: 0.10, house: 0.09,
table: 0.08, chair: 0.07, railing: 0.06, light: 0.06, wood: 0.06, gravel: 0.05, floor-wood: 0.04,
other: 0.76
Instances with no context: 24/5270

Context in specific instance quadrants
quadrant-I:
sky-other: 39.50, clouds: 19.54, building-other: 9.68, tree: 5.88, fog: 4.47, mountain: 2.63,
road: 2.63, grass: 2.17, ceiling-other: 1.21, hill: 1.11, window-other: 1.08, sea: 1.02, metal:
0.98, pavement: 0.96, wall-other: 0.78, ground-other: 0.64, person: 0.61, floor-other: 0.52,
sand: 0.45, wall-concrete: 0.39, fence: 0.36, wall-panel: 0.26, plant-other: 0.23, structural-
other: 0.19, solid-other: 0.18, roof: 0.17, dirt: 0.15, bush: 0.15, truck: 0.14, water-other: 0.12,
skyscraper: 0.12, banner: 0.11, river: 0.11, bridge: 0.08, house: 0.08, floor-tile: 0.07, table:
0.07, light: 0.07, straw: 0.07, wood: 0.07, bus: 0.06, window-blind: 0.06, platform: 0.05, paper:
0.04, wall-brick: 0.04, wall-wood: 0.04, chair: 0.04, snow: 0.03, branch: 0.03, textile-other:
0.03, other: 0.51
quadrant-II:
sky-other: 39.44, clouds: 19.48, building-other: 9.38, tree: 5.99, fog: 4.47, road: 2.85, moun-
tain: 2.51, grass: 2.23, ceiling-other: 1.20, hill: 1.16, pavement: 1.11, window-other: 1.00, sea:
0.99, metal: 0.82, wall-other: 0.80, ground-other: 0.69, person: 0.59, floor-other: 0.55, sand:

119

0.48, wall-concrete: 0.36, fence: 0.35, wall-panel: 0.27, plant-other: 0.20, truck: 0.19, bush:
0.18, skyscraper: 0.18, solid-other: 0.16, dirt: 0.15, structural-other: 0.15, water-other: 0.15,
banner: 0.14, platform: 0.14, roof: 0.13, river: 0.13, bridge: 0.12, house: 0.11, light: 0.08,
table: 0.07, wood: 0.06, car: 0.06, paper: 0.05, floor-tile: 0.05, snow: 0.04, playingfield: 0.04,
window-blind: 0.04, bus: 0.04, refrigerator: 0.04, wall-brick: 0.04, tv: 0.04, cage: 0.03, other:
0.48
quadrant-III:
sky-other: 23.62, road: 15.65, clouds: 11.68, pavement: 7.33, grass: 6.66, building-other:
6.60, ground-other: 3.22, tree: 3.18, fog: 2.32, mountain: 1.84, person: 1.73, floor-other: 1.69,
metal: 1.46, truck: 1.33, dirt: 1.04, sea: 1.03, fence: 0.97, window-other: 0.89, sand: 0.83,
wall-other: 0.58, hill: 0.55, ceiling-other: 0.43, platform: 0.41, snow: 0.36, bush: 0.33, wall-
concrete: 0.29, solid-other: 0.27, river: 0.25, plant-other: 0.22, car: 0.22, water-other: 0.18,
bus: 0.17, bridge: 0.16, floor-tile: 0.16, stairs: 0.15, wall-panel: 0.15, gravel: 0.14, structural-
other: 0.13, straw: 0.12, table: 0.09, railing: 0.09, playingfield: 0.09, chair: 0.08, cage: 0.08,
house: 0.08, roof: 0.07, floor-wood: 0.07, banner: 0.06, light: 0.06, wood: 0.05, other: 0.87
quadrant-IV:
sky-other: 23.32, road: 15.30, clouds: 11.60, building-other: 7.41, pavement: 7.12, grass:
6.73, tree: 3.06, ground-other: 3.00, fog: 2.35, person: 2.02, mountain: 1.89, floor-other: 1.71,
metal: 1.58, truck: 1.27, sea: 1.09, fence: 1.01, dirt: 0.96, window-other: 0.92, sand: 0.80,
hill: 0.60, wall-other: 0.51, ceiling-other: 0.44, snow: 0.31, wall-concrete: 0.28, platform: 0.27,
solid-other: 0.26, bush: 0.25, river: 0.25, plant-other: 0.24, stairs: 0.22, car: 0.21, straw: 0.21,
floor-tile: 0.18, structural-other: 0.16, water-other: 0.16, bridge: 0.13, bus: 0.13, wall-panel:
0.11, gravel: 0.10, house: 0.10, playingfield: 0.10, chair: 0.09, table: 0.09, railing: 0.08, floor-
wood: 0.08, textile-other: 0.08, banner: 0.07, cage: 0.07, roof: 0.07, skyscraper: 0.07, other:
0.93

40% - Increased Instances

Context across the entire instance
sky-other: 32.49, clouds: 16.21, road: 8.34, building-other: 8.08, tree: 4.48, grass: 4.27,
pavement: 3.89, fog: 3.56, mountain: 2.29, ground-other: 1.77, floor-other: 1.12, person:
1.11, metal: 1.04, sea: 1.04, window-other: 0.97, hill: 0.88, ceiling-other: 0.85, truck: 0.69,
fence: 0.64, wall-other: 0.63, sand: 0.63, dirt: 0.52, wall-concrete: 0.32, bush: 0.23, plant-
other: 0.22, platform: 0.22, solid-other: 0.21, wall-panel: 0.21, structural-other: 0.18, river:
0.17, snow: 0.17, floor-tile: 0.15, water-other: 0.15, car: 0.13, bridge: 0.12, playingfield: 0.12,
bus: 0.11, roof: 0.11, skyscraper: 0.11, straw: 0.10, banner: 0.10, stairs: 0.09, house: 0.09,
table: 0.08, chair: 0.07, railing: 0.06, gravel: 0.06, light: 0.06, wood: 0.05, floor-wood: 0.04,
other: 0.76
Instances with no context: 22/5270

Context in specific instance quadrants
quadrant-I:
sky-other: 39.93, clouds: 19.74, building-other: 9.45, tree: 5.80, fog: 4.53, mountain: 2.59,

120

road: 2.52, grass: 2.09, ceiling-other: 1.24, hill: 1.10, window-other: 1.08, sea: 1.02, metal:
0.96, pavement: 0.94, wall-other: 0.76, ground-other: 0.63, person: 0.59, floor-other: 0.51,
sand: 0.44, wall-concrete: 0.39, fence: 0.35, wall-panel: 0.26, plant-other: 0.22, structural-
other: 0.19, solid-other: 0.18, roof: 0.18, bush: 0.15, dirt: 0.14, truck: 0.13, skyscraper: 0.12,
water-other: 0.12, banner: 0.11, river: 0.10, bridge: 0.08, house: 0.08, light: 0.07, floor-tile:
0.07, table: 0.07, wood: 0.07, straw: 0.06, bus: 0.06, window-blind: 0.06, platform: 0.05,
paper: 0.04, wall-brick: 0.04, chair: 0.04, wall-wood: 0.04, textile-other: 0.03, snow: 0.03,
branch: 0.03, other: 0.51
quadrant-II:
sky-other: 39.81, clouds: 19.74, building-other: 9.18, tree: 5.90, fog: 4.54, road: 2.72, moun-
tain: 2.48, grass: 2.15, ceiling-other: 1.25, hill: 1.15, pavement: 1.07, window-other: 0.99,
sea: 0.97, wall-other: 0.80, metal: 0.80, ground-other: 0.68, person: 0.55, floor-other: 0.54,
sand: 0.47, wall-concrete: 0.36, fence: 0.34, wall-panel: 0.27, truck: 0.20, plant-other: 0.19,
skyscraper: 0.18, bush: 0.17, solid-other: 0.16, dirt: 0.15, water-other: 0.15, structural-other:
0.14, platform: 0.14, banner: 0.14, roof: 0.13, bridge: 0.13, river: 0.12, house: 0.11, light:
0.09, table: 0.07, car: 0.06, wood: 0.06, paper: 0.05, floor-tile: 0.05, snow: 0.04, bus: 0.04,
wall-brick: 0.04, playingfield: 0.04, window-blind: 0.04, refrigerator: 0.04, tv: 0.04, railing: 0.03,
other: 0.47
quadrant-III:
sky-other: 23.34, road: 16.04, clouds: 11.58, pavement: 7.49, grass: 6.91, building-other:
6.34, ground-other: 3.28, tree: 3.02, fog: 2.27, mountain: 1.80, floor-other: 1.72, person: 1.70,
metal: 1.46, truck: 1.35, dirt: 1.06, sea: 1.03, fence: 0.97, window-other: 0.88, sand: 0.84,
wall-other: 0.56, hill: 0.51, platform: 0.42, ceiling-other: 0.42, snow: 0.37, bush: 0.33, wall-
concrete: 0.29, solid-other: 0.28, river: 0.26, car: 0.23, plant-other: 0.22, water-other: 0.17,
bus: 0.17, floor-tile: 0.16, bridge: 0.16, wall-panel: 0.15, gravel: 0.15, stairs: 0.15, structural-
other: 0.13, straw: 0.12, railing: 0.10, table: 0.09, playingfield: 0.09, chair: 0.08, cage: 0.08,
house: 0.07, floor-wood: 0.07, roof: 0.06, banner: 0.06, floor-stone: 0.05, light: 0.05, other:
0.88
quadrant-IV:
sky-other: 23.08, road: 15.66, clouds: 11.55, pavement: 7.30, building-other: 7.08, grass:
6.96, ground-other: 3.07, tree: 2.94, fog: 2.31, person: 2.01, mountain: 1.85, floor-other: 1.73,
metal: 1.56, truck: 1.28, sea: 1.10, fence: 1.00, dirt: 0.99, window-other: 0.91, sand: 0.81,
hill: 0.56, wall-other: 0.50, ceiling-other: 0.43, snow: 0.32, wall-concrete: 0.28, platform: 0.27,
solid-other: 0.26, river: 0.26, bush: 0.25, plant-other: 0.25, stairs: 0.21, car: 0.21, straw: 0.20,
floor-tile: 0.18, structural-other: 0.16, water-other: 0.16, bus: 0.13, bridge: 0.13, wall-panel:
0.11, gravel: 0.11, chair: 0.10, playingfield: 0.10, house: 0.10, table: 0.09, railing: 0.08, floor-
wood: 0.08, textile-other: 0.08, banner: 0.07, cage: 0.07, roof: 0.07, skyscraper: 0.06, other:
0.94

121

B.3 PASCAL-Context59

B.3.1 Images

Semantic Context

Context across the entire image
sky: 58.02, ground: 12.04, grass: 7.44, building: 6.09, tree: 3.97, road: 3.53, mountain: 1.99,
floor: 1.03, water: 0.92, wall: 0.90, person: 0.84, ceiling: 0.81, snow: 0.60, fence: 0.54, truck:
0.50, car: 0.21, boat: 0.18, window: 0.15, sign: 0.08, food: 0.06, chair: 0.02, light: 0.02, bus:
0.01, bench: 0.01, table: 0.01, shelves: 0.01
images with no context: 2/582

Context in specific image quadrants
quadrant-I:
sky: 77.46, building: 7.43, tree: 4.35, mountain: 2.56, grass: 1.72, ground: 1.45, ceiling: 1.33,
wall: 1.19, person: 0.54, road: 0.51, truck: 0.26, water: 0.25, fence: 0.24, light: 0.20, window:
0.19, snow: 0.11, floor: 0.11, car: 0.04, sign: 0.02, boat: 0.01, door: 0.01, bus: 0.01, shelves:
0.01
quadrant-II:
sky: 78.07, building: 6.43, tree: 4.34, mountain: 2.61, grass: 1.85, ground: 1.53, wall: 1.48,
ceiling: 1.06, road: 0.62, person: 0.50, water: 0.28, window: 0.27, truck: 0.20, light: 0.19,
floor: 0.17, fence: 0.17, snow: 0.08, car: 0.04, sign: 0.04, boat: 0.03, bus: 0.03, cabinet: 0.01
quadrant-III:
sky: 37.19, ground: 22.98, grass: 13.52, road: 7.03, building: 5.47, tree: 3.64, floor: 1.87,
water: 1.49, mountain: 1.42, person: 1.11, snow: 0.95, fence: 0.87, truck: 0.70, wall: 0.45,
car: 0.39, boat: 0.38, window: 0.17, food: 0.15, sign: 0.11, chair: 0.05, table: 0.02, cloth: 0.01,
bench: 0.01, cabinet: 0.01, light: 0.01
quadrant-IV:
sky: 36.69, ground: 23.04, grass: 13.23, road: 6.82, building: 5.32, tree: 3.65, floor: 2.20,
water: 1.69, mountain: 1.44, person: 1.38, fence: 0.92, snow: 0.90, truck: 0.90, car: 0.44,
wall: 0.35, boat: 0.30, sign: 0.19, ceiling: 0.17, food: 0.14, window: 0.10, chair: 0.03, bench:
0.02, table: 0.02, shelves: 0.02, rock: 0.01, wood: 0.01, pottedplant: 0.01, bus: 0.01
image quadrants with no context:
quadrant-I 5/582
quadrant-II: 7/582
quadrant-III: 5/582
quadrant-IV: 8/582

Label-neighborhood

left:
sky: 52.91, ground: 11.12, building: 9.28, grass: 8.01, tree: 5.31, road: 3.59, mountain: 2.32,

122

person: 1.28, wall: 1.22, floor: 1.14, water: 0.81, snow: 0.66, truck: 0.45, fence: 0.43, ceiling:
0.38, window: 0.26, car: 0.20, boat: 0.12, light: 0.08, sign: 0.05, bench: 0.02, bus: 0.01,
shelves: 0.01, table: 0.01
up:
sky: 59.97, building: 11.64, tree: 7.12, grass: 5.36, ground: 5.28, mountain: 3.14, wall: 1.55,
road: 1.42, water: 0.77, person: 0.71, floor: 0.65, ceiling: 0.61, snow: 0.44, fence: 0.28,
window: 0.18, truck: 0.15, light: 0.15, car: 0.12, boat: 0.05, sign: 0.04, bus: 0.03
right:
sky: 53.06, ground: 10.74, building: 9.96, grass: 7.88, tree: 5.23, road: 3.44, mountain: 2.34,
person: 1.39, floor: 1.24, wall: 1.02, water: 0.78, snow: 0.74, ceiling: 0.44, fence: 0.40, truck:
0.30, car: 0.29, window: 0.27, boat: 0.05, sign: 0.05, bus: 0.01, light: 0.01, shelves: 0.01
down:
sky: 44.67, ground: 15.89, grass: 11.64, building: 9.34, road: 5.04, tree: 4.26, floor: 1.55,
mountain: 1.41, person: 1.15, water: 1.04, snow: 0.85, wall: 0.80, truck: 0.62, car: 0.48,
fence: 0.34, boat: 0.21, window: 0.13, ceiling: 0.12, sign: 0.05, chair: 0.03, bench: 0.02, table:
0.02, bus: 0.02

B.3.2 Instances

Default Instance Size

Context across the entire instance
sky: 53.97, building: 10.60, ground: 10.40, grass: 6.26, tree: 5.21, road: 2.73, mountain: 2.37,
wall: 2.34, floor: 1.36, person: 0.87, ceiling: 0.85, water: 0.74, truck: 0.62, snow: 0.46, fence:
0.39, car: 0.27, window: 0.26, light: 0.16, boat: 0.07, sign: 0.04, bus: 0.02
Instances with no context: 5/811

Context in specific instance quadrants
quadrant-I:
sky: 64.62, building: 11.53, tree: 6.51, mountain: 3.37, ground: 3.32, grass: 3.29, wall: 2.71,
ceiling: 1.00, road: 0.70, person: 0.63, floor: 0.63, water: 0.59, snow: 0.30, fence: 0.30,
window: 0.27, truck: 0.15, car: 0.06, light: 0.02, sign: 0.01, bus: 0.01, shelves: 0.01
quadrant-II:
sky: 65.01, building: 10.45, tree: 6.32, grass: 3.82, mountain: 3.35, ground: 3.13, wall: 2.84,
ceiling: 1.08, road: 0.78, floor: 0.65, water: 0.65, person: 0.52, window: 0.33, snow: 0.32,
light: 0.28, fence: 0.26, truck: 0.10, car: 0.04, bus: 0.04, boat: 0.01
quadrant-III:
sky: 40.13, ground: 18.89, building: 10.51, grass: 10.31, road: 5.49, tree: 3.66, floor: 1.90,
wall: 1.60, person: 1.35, mountain: 1.26, truck: 1.09, water: 0.90, car: 0.72, snow: 0.60,
fence: 0.50, ceiling: 0.47, boat: 0.27, window: 0.20, sign: 0.07, light: 0.03, bench: 0.03, cloth:
0.01, chair: 0.01, shelves: 0.01
quadrant-IV:
sky: 39.88, ground: 19.61, building: 10.50, grass: 9.97, road: 5.33, tree: 4.07, floor: 2.19,

123

wall: 1.57, person: 1.35, mountain: 1.18, water: 1.00, truck: 0.98, car: 0.57, snow: 0.52,
fence: 0.51, ceiling: 0.35, window: 0.15, boat: 0.12, sign: 0.08, bench: 0.02, bus: 0.01, table:
0.01, light: 0.01, pottedplant: 0.01

10% - Increased Instances

Context across the entire instance
sky: 53.81, ground: 10.86, building: 10.46, grass: 6.19, tree: 5.07, road: 2.87, wall: 2.32,
mountain: 2.30, floor: 1.37, ceiling: 0.87, person: 0.83, water: 0.73, truck: 0.59, snow: 0.46,
fence: 0.41, car: 0.27, window: 0.25, light: 0.16, boat: 0.08, sign: 0.05, bus: 0.02
Instances with no context: 4/811

Context in specific instance quadrants
quadrant-I:
sky: 65.01, building: 11.42, tree: 6.39, grass: 3.38, mountain: 3.31, ground: 3.20, wall: 2.63,
ceiling: 1.08, road: 0.65, floor: 0.60, water: 0.57, person: 0.56, snow: 0.29, fence: 0.28,
window: 0.27, truck: 0.15, light: 0.14, car: 0.05, sign: 0.01, bus: 0.01
quadrant-II:
sky: 65.40, building: 10.52, tree: 6.19, grass: 3.76, mountain: 3.27, ground: 3.02, wall: 2.82,
ceiling: 1.10, road: 0.73, floor: 0.63, water: 0.62, person: 0.47, light: 0.41, window: 0.33,
snow: 0.28, fence: 0.26, truck: 0.09, car: 0.04, bus: 0.03, boat: 0.01, sign: 0.01
quadrant-III:
sky: 39.61, ground: 19.84, grass: 10.10, building: 10.08, road: 5.79, tree: 3.55, floor: 1.91,
wall: 1.75, person: 1.28, mountain: 1.20, truck: 1.07, water: 0.87, car: 0.70, snow: 0.61,
fence: 0.54, ceiling: 0.45, boat: 0.27, window: 0.21, sign: 0.07, bench: 0.03, light: 0.03, chair:
0.02, cloth: 0.01, shelves: 0.01
quadrant-IV:
sky: 39.43, ground: 20.63, building: 10.01, grass: 9.66, road: 5.72, tree: 3.81, floor: 2.20,
wall: 1.55, person: 1.32, mountain: 1.12, water: 0.97, truck: 0.96, snow: 0.56, fence: 0.55,
car: 0.53, ceiling: 0.46, window: 0.16, boat: 0.13, sign: 0.12, bench: 0.03, bus: 0.02, table:
0.02, shelves: 0.01, chair: 0.01, pottedplant: 0.01, light: 0.01

20% - Increased Instances

Context across the entire instance
sky: 53.74, ground: 11.28, building: 10.14, grass: 6.24, tree: 4.93, road: 2.99, wall: 2.29,
mountain: 2.25, floor: 1.38, ceiling: 0.90, person: 0.80, water: 0.72, truck: 0.61, snow: 0.47,
fence: 0.42, car: 0.27, window: 0.25, light: 0.13, boat: 0.09, sign: 0.06, bench: 0.02, bus:
0.01, shelves: 0.01
Instances with no context: 4/811

Context in specific instance quadrants
quadrant-I:

124

sky: 65.51, building: 11.37, tree: 6.27, mountain: 3.43, grass: 3.24, ground: 3.04, wall: 2.55,
ceiling: 1.16, road: 0.61, floor: 0.59, water: 0.55, person: 0.51, window: 0.27, snow: 0.26,
fence: 0.26, truck: 0.15, light: 0.14, car: 0.05, sign: 0.01, bus: 0.01
quadrant-II:
sky: 66.03, building: 10.43, tree: 6.01, grass: 3.62, mountain: 3.24, wall: 2.88, ground: 2.87,
ceiling: 1.13, road: 0.69, floor: 0.63, water: 0.59, person: 0.46, light: 0.40, window: 0.33,
fence: 0.25, snow: 0.25, truck: 0.09, car: 0.03, bus: 0.03, sign: 0.02, boat: 0.01
quadrant-III:
sky: 39.08, ground: 20.74, grass: 10.08, building: 9.60, road: 5.97, tree: 3.43, floor: 2.05,
wall: 1.76, person: 1.25, mountain: 1.13, truck: 1.06, water: 0.85, car: 0.67, snow: 0.63,
fence: 0.58, ceiling: 0.43, boat: 0.27, window: 0.23, sign: 0.08, bench: 0.03, light: 0.03, chair:
0.02, cloth: 0.01, shelves: 0.01
quadrant-IV:
sky: 38.94, ground: 21.36, grass: 9.80, building: 9.48, road: 6.05, tree: 3.60, floor: 2.22, wall:
1.53, person: 1.27, truck: 1.06, mountain: 1.04, water: 0.96, fence: 0.60, snow: 0.58, car:
0.51, ceiling: 0.45, window: 0.17, boat: 0.14, sign: 0.12, bench: 0.04, shelves: 0.02, bus:
0.02, table: 0.02, chair: 0.01, pottedplant: 0.01, rock: 0.01

30% - Increased Instances

Context across the entire instance
sky: 53.74, ground: 11.58, building: 9.88, grass: 6.30, tree: 4.77, road: 3.06, wall: 2.26,
mountain: 2.24, floor: 1.35, ceiling: 0.93, person: 0.82, water: 0.71, truck: 0.61, snow: 0.47,
fence: 0.43, car: 0.28, window: 0.25, light: 0.11, boat: 0.09, sign: 0.06, bench: 0.02, bus:
0.01, shelves: 0.01
Instances with no context: 4/811

Context in specific instance quadrants
quadrant-I:
sky: 66.14, building: 11.18, tree: 6.12, mountain: 3.46, grass: 3.15, ground: 2.91, wall: 2.49,
ceiling: 1.23, road: 0.60, floor: 0.58, water: 0.54, person: 0.49, window: 0.27, fence: 0.25,
snow: 0.24, light: 0.14, truck: 0.14, car: 0.04, sign: 0.01, bus: 0.01
quadrant-II:
sky: 66.66, building: 10.27, tree: 5.81, grass: 3.53, mountain: 3.25, wall: 2.83, ground: 2.75,
ceiling: 1.19, road: 0.66, floor: 0.62, water: 0.57, person: 0.45, light: 0.40, window: 0.34,
fence: 0.25, snow: 0.22, truck: 0.09, car: 0.03, bus: 0.03, sign: 0.02, boat: 0.01
quadrant-III:
sky: 38.69, ground: 21.43, grass: 10.18, building: 9.20, road: 6.10, tree: 3.34, floor: 2.05,
wall: 1.77, person: 1.22, mountain: 1.07, truck: 1.06, water: 0.84, car: 0.67, snow: 0.65,
fence: 0.59, ceiling: 0.41, boat: 0.27, window: 0.23, sign: 0.09, bench: 0.06, light: 0.02, chair:
0.02, cloth: 0.01, shelves: 0.01
quadrant-IV:
sky: 38.59, ground: 22.00, grass: 9.97, building: 9.13, road: 6.14, tree: 3.44, floor: 2.20, wall:

125

1.52, person: 1.28, truck: 1.04, mountain: 0.97, water: 0.95, fence: 0.63, snow: 0.60, car:
0.51, ceiling: 0.43, window: 0.17, boat: 0.16, sign: 0.11, bench: 0.04, shelves: 0.03, table:
0.02, bus: 0.02, chair: 0.02, rock: 0.01, pottedplant: 0.01

40% - Increased Instances

Context across the entire instance
sky: 53.70, ground: 11.85, building: 9.74, grass: 6.35, tree: 4.61, road: 3.11, wall: 2.25,
mountain: 2.23, floor: 1.32, ceiling: 0.95, person: 0.82, water: 0.70, truck: 0.61, snow: 0.46,
fence: 0.43, car: 0.28, window: 0.24, boat: 0.10, light: 0.09, sign: 0.06, bench: 0.02, bus:
0.01, chair: 0.01, shelves: 0.01
Instances with no context: 3/811

Context in specific instance quadrants
quadrant-I:
sky: 66.62, building: 11.13, tree: 5.93, mountain: 3.48, grass: 3.05, ground: 2.82, wall: 2.46,
ceiling: 1.27, road: 0.58, floor: 0.55, water: 0.53, person: 0.48, window: 0.27, fence: 0.24,
snow: 0.22, light: 0.14, truck: 0.14, car: 0.04, sign: 0.02, bus: 0.01
quadrant-II:
sky: 67.19, building: 10.24, tree: 5.60, grass: 3.39, mountain: 3.27, wall: 2.80, ground: 2.67,
ceiling: 1.24, road: 0.63, floor: 0.60, water: 0.55, person: 0.44, light: 0.39, window: 0.33,
fence: 0.26, snow: 0.21, truck: 0.09, car: 0.03, sign: 0.02, bus: 0.02, boat: 0.01
quadrant-III:
sky: 38.46, ground: 22.04, grass: 10.36, building: 8.81, road: 6.18, tree: 3.25, floor: 2.05,
wall: 1.79, person: 1.15, mountain: 1.03, truck: 1.00, water: 0.83, car: 0.66, snow: 0.65,
fence: 0.59, ceiling: 0.38, boat: 0.28, window: 0.23, sign: 0.10, bench: 0.07, chair: 0.03, light:
0.02, cloth: 0.01, table: 0.01, motorbike: 0.01
quadrant-IV:
sky: 38.30, ground: 22.63, grass: 10.11, building: 8.78, road: 6.22, tree: 3.31, floor: 2.19,
wall: 1.52, person: 1.28, truck: 1.01, water: 0.96, mountain: 0.92, fence: 0.65, snow: 0.60,
car: 0.50, ceiling: 0.41, boat: 0.18, window: 0.18, sign: 0.11, bench: 0.03, shelves: 0.02, table:
0.02, chair: 0.02, bus: 0.01, rock: 0.01, pottedplant: 0.01

B.4 SemanticAircraftV1

B.4.1 Images

Semantic Context

Context across the entire image
sky: 53.21, pavement: 15.90, soil: 6.86, void: 5.35, building: 4.20, plant: 3.83, indoor: 2.87,
elevation: 2.54, waterbody: 1.82, object: 1.28, person: 1.19, vehicle: 1
images with no context: 0/3801

126

Context in specific image quadrants
quadrant-I:
sky: 74.53, building: 4.54, plant: 4.01, void: 3.91, indoor: 3.67, pavement: 2.64, elevation:
2.51, soil: 1.58, waterbody: 0.84, object: 0.75, person: 0.71, vehicle: 0.31
quadrant-II:
sky: 74.67, building: 4.33, plant: 4.03, void: 3.71, indoor: 3.68, pavement: 2.99, elevation:
2.56, soil: 1.63, waterbody: 0.82, person: 0.63, object: 0.57, vehicle: 0.37
quadrant-III:
sky: 30.68, pavement: 30.15, soil: 12.41, void: 6.74, building: 3.89, plant: 3.58, waterbody:
2.79, elevation: 2.49, indoor: 2.11, object: 1.89, vehicle: 1.66, person: 1.61
quadrant-IV:
sky: 30.66, pavement: 29.47, soil: 12.37, void: 7.03, building: 4.08, plant: 3.58, waterbody:
2.87, elevation: 2.48, indoor: 2.04, object: 2.04, person: 1.81, vehicle: 1.56
image quadrants with no context:
quadrant-I: 6/3801
quadrant-II: 3/3801
quadrant-III: 4/3801
quadrant-IV: 8/3801

Label-neighborhood

left:
sky: 52.84, pavement: 14.73, building: 6.85, soil: 6.10, plant: 5.19, indoor: 3.25, elevation:
2.88, person: 2.78, object: 2.25, waterbody: 1.68, vehicle: 0.73

up:
sky: 58.31, building: 9.13, pavement: 8.71, plant: 6.85, soil: 4.34, indoor: 3.92, elevation:
3.44, waterbody: 1.68, object: 1.59, person: 0.98, vehicle: 0.30

right:
sky: 52.58, pavement: 13.93, building: 7.46, soil: 6.06, plant: 5.17, indoor: 3.46, person: 3.13,
elevation: 3.01, object: 2.10, waterbody: 1.67, vehicle: 0.68

down:
sky: 41.79, pavement: 24.86, soil: 9.57, building: 5.77, plant: 4.11, object: 2.89, indoor: 2.74,
elevation: 2.29, person: 2.09, waterbody: 1.85, vehicle: 1.29

B.4.2 Instances

Default Instance Size

Context across the entire instance
sky: 50.72, pavement: 12.71, building: 9.75, soil: 5.53, plant: 5.26, void: 4.34, indoor: 3.51,
elevation: 3.30, object: 1.61, waterbody: 1.38, person: 1.12, vehicle: 0.77
Instances with no context: 14/6354

127

Context in specific instance quadrants
quadrant-I:
sky: 59.59, building: 10.85, plant: 6.24, pavement: 4.93, indoor: 4.20, elevation: 3.82, void:
3.78, soil: 3.22, waterbody: 1.32, object: 1.23, person: 0.62, vehicle: 0.20
quadrant-II:
sky: 59.59, building: 10.51, plant: 6.36, pavement: 5.35, indoor: 4.00, void: 3.79, elevation:
3.72, soil: 3.33, waterbody: 1.32, object: 1.20, person: 0.59, vehicle: 0.24
quadrant-III:
sky: 37.73, pavement: 23.97, soil: 8.65, building: 8.35, void: 5.03, plant: 4.00, indoor: 2.91,
elevation: 2.38, object: 2.37, person: 1.65, vehicle: 1.54, waterbody: 1.42
quadrant-IV:
sky: 37.46, pavement: 23.29, building: 9.05, soil: 8.63, void: 5.20, plant: 3.87, indoor: 2.94,
elevation: 2.44, object: 2.38, person: 1.82, waterbody: 1.52, vehicle: 1.39

10% - Increased Instances

Context across the entire instance
sky: 50.50, pavement: 13.33, building: 9.50, soil: 5.55, plant: 5.10, void: 4.46, indoor: 3.52,
elevation: 3.18, object: 1.64, waterbody: 1.39, person: 1.04, vehicle: 0.79
Instances with no context: 11/6354

Context in specific instance quadrants
quadrant-I:
sky: 60.22, building: 10.66, plant: 6.10, pavement: 4.76, indoor: 4.19, void: 3.85, elevation:
3.72, soil: 3.18, waterbody: 1.35, object: 1.21, person: 0.55, vehicle: 0.20
quadrant-II:
sky: 60.19, building: 10.34, plant: 6.27, pavement: 5.16, indoor: 4.02, void: 3.92, elevation:
3.62, soil: 3.24, waterbody: 1.31, object: 1.19, person: 0.51, vehicle: 0.22
quadrant-III:
sky: 36.96, pavement: 25.11, soil: 8.65, building: 8.03, void: 5.32, plant: 3.81, indoor: 2.92,
object: 2.44, elevation: 2.26, vehicle: 1.55, person: 1.53, waterbody: 1.42
quadrant-IV:
sky: 36.72, pavement: 24.42, building: 8.69, soil: 8.61, void: 5.48, plant: 3.66, indoor: 2.94,
object: 2.48, elevation: 2.37, person: 1.72, waterbody: 1.52, vehicle: 1.39

20% - Increased Instances

Context across the entire instance
sky: 50.34, pavement: 13.90, building: 9.18, soil: 5.61, plant: 4.93, void: 4.62, indoor: 3.51,
elevation: 3.08, object: 1.64, waterbody: 1.39, person: 1.00, vehicle: 0.8
Instances with no context: 6/6354

128

Context in specific instance quadrants
quadrant-I:
sky: 60.85, building: 10.43, plant: 6.00, pavement: 4.59, indoor: 4.16, void: 3.94, elevation:
3.67, soil: 3.06, waterbody: 1.35, object: 1.23, person: 0.52, vehicle: 0.19
quadrant-II:
sky: 60.88, building: 10.17, plant: 6.12, pavement: 4.92, indoor: 4.04, void: 3.97, elevation:
3.58, soil: 3.15, waterbody: 1.29, object: 1.17, person: 0.49, vehicle: 0.22
quadrant-III:
sky: 36.29, pavement: 26.21, soil: 8.77, building: 7.61, void: 5.61, plant: 3.62, indoor: 2.90,
object: 2.40, elevation: 2.16, vehicle: 1.54, person: 1.48, waterbody: 1.41
quadrant-IV:
sky: 35.98, pavement: 25.55, soil: 8.76, building: 8.29, void: 5.74, plant: 3.44, indoor: 2.88,
object: 2.45, elevation: 2.27, person: 1.70, waterbody: 1.54, vehicle: 1.40

30% - Increased Instances

Context across the entire instance
sky: 50.29, pavement: 14.30, building: 8.91, soil: 5.68, plant: 4.79, void: 4.71, indoor: 3.49,
elevation: 3.01, object: 1.62, waterbody: 1.40, person: 0.98, vehicle: 0.82
Instances with no context: 5/6354

Context in specific instance quadrants
quadrant-I:
sky: 61.46, building: 10.21, plant: 5.93, pavement: 4.40, indoor: 4.16, void: 4.04, elevation:
3.62, soil: 2.94, waterbody: 1.35, object: 1.20, person: 0.50, vehicle: 0.19
quadrant-II:
sky: 61.53, building: 9.94, plant: 6.01, pavement: 4.73, indoor: 4.04, void: 4.04, elevation:
3.55, soil: 3.04, waterbody: 1.29, object: 1.13, person: 0.47, vehicle: 0.22
quadrant-III:
sky: 35.80, pavement: 26.89, soil: 8.98, building: 7.30, void: 5.83, plant: 3.46, indoor: 2.89,
object: 2.36, elevation: 2.08, vehicle: 1.55, person: 1.45, waterbody: 1.41
quadrant-IV:
sky: 35.51, pavement: 26.30, soil: 8.97, building: 7.92, void: 5.99, plant: 3.30, indoor: 2.83,
object: 2.38, elevation: 2.19, person: 1.66, waterbody: 1.54, vehicle: 1.42

40% - Increased Instances

Context across the entire instance
sky: 50.30, pavement: 14.63, building: 8.64, soil: 5.76, void: 4.82, plant: 4.66, indoor: 3.47,
elevation: 2.95, object: 1.60, waterbody: 1.39, person: 0.97, vehicle: 0.81 Instances with no
context: 2/6354

129

Context in specific instance quadrants
quadrant-I:
sky: 62.09, building: 9.97, plant: 5.83, pavement: 4.26, indoor: 4.17, void: 4.08, elevation:
3.57, soil: 2.84, waterbody: 1.34, object: 1.17, person: 0.49, vehicle: 0.18
quadrant-II:
sky: 62.13, building: 9.73, plant: 5.88, pavement: 4.55, void: 4.14, indoor: 4.06, elevation:
3.52, soil: 2.94, waterbody: 1.27, object: 1.11, person: 0.46, vehicle: 0.22
quadrant-III:
sky: 35.38, pavement: 27.46, soil: 9.23, building: 7.00, void: 6.01, plant: 3.31, indoor: 2.85,
object: 2.36, elevation: 2.01, vehicle: 1.58, person: 1.41, waterbody: 1.40
quadrant-IV:
sky: 35.15, pavement: 26.90, soil: 9.21, building: 7.58, void: 6.13, plant: 3.18, indoor: 2.79,
object: 2.35, elevation: 2.10, person: 1.63, waterbody: 1.54, vehicle: 1.44

B.5 SemanticAircraft

B.5.1 Instances

Semantic Context

Context across the entire instance
sky: 57.21, pavement: 15.81, building: 7.48, soil: 6.23, plant: 5.11, elevation: 3.18, object:
1.54, waterbody: 1.37, person: 1.15, vehicle: 0.91, indoor: 0.01

Context in specific instance quadrants
quadrant-I:
sky: 71.56, building: 8.60, plant: 6.31, pavement: 4.33, elevation: 3.68, soil: 2.83, waterbody:
1.19, object: 0.78, person: 0.55, vehicle: 0.15, indoor: 0.02
quadrant-II:
sky: 71.67, building: 8.12, plant: 6.26, pavement: 4.56, elevation: 3.63, soil: 2.89, waterbody:
1.17, object: 0.89, person: 0.56, vehicle: 0.23, indoor: 0.02
quadrant-III:
sky: 38.47, pavement: 30.90, soil: 10.38, building: 6.13, plant: 3.82, object: 2.69, elevation:
2.38, vehicle: 1.89, person: 1.78, waterbody: 1.50, indoor: 0.07
quadrant-IV:
sky: 38.36, pavement: 30.31, soil: 10.30, building: 6.87, plant: 3.74, object: 2.69, elevation:
2.34, person: 1.97, vehicle: 1.78, waterbody: 1.61, indoor: 0.02

Label-neighborhood

left:
sky: 53.75, pavement: 15.55, building: 8.38, soil: 6.69, plant: 5.78, elevation: 3.04, object:
2.55, person: 2.28, waterbody: 1.33, vehicle: 0.61, indoor: 0.04

130

up:
sky: 59.21, building: 11.08, pavement: 9.35, plant: 7.70, soil: 4.85, elevation: 3.70, object:
1.77, waterbody: 1.30, person: 0.77, vehicle: 0.24, indoor: 0.04
right:
sky: 53.66, pavement: 14.79, building: 9.21, soil: 6.56, plant: 5.79, elevation: 3.08, person:
2.69, object: 2.26, waterbody: 1.31, vehicle: 0.60, indoor: 0.04
down:
sky: 41.37, pavement: 27.11, soil: 10.48, building: 6.97, plant: 4.35, object: 3.29, elevation:
2.18, person: 1.63, waterbody: 1.40, vehicle: 1.19, indoor: 0.03

B.5.2 Quadrants

Context across the entire quadrants
sky: 58.57, pavement: 17.44, soil: 7.76, building: 4.26, plant: 4.04, elevation: 2.76, waterbody:
1.88, object: 1.19, person: 1.08, vehicle: indoor: 1.02
Context in quadrants of quadrants of original images are omitted

Label-neighborhood

left:
sky: 45.38, pavement: 13.76, soil: 5.81, building: 5.70, plant: 4.71, elevation: 2.45, person:
2.25, object: 1.61, waterbody: 1.14, vehicle: 0.66, indoor: 0.01
up:
sky: 48.32, pavement: 9.98, building: 7.22, plant: 5.89, soil: 5.00, elevation: 2.82, object: 1.36,
person: 1.22, waterbody: 1.18, vehicle: 0.34, indoor: 0.02
right:
sky: 45.22, pavement: 13.06, building: 6.49, soil: 5.79, plant: 4.72, elevation: 2.46, person:
2.45, object: 1.54, waterbody: 1.12, vehicle: 0.58, indoor: 0.02
down:
sky: 40.36, pavement: 17.65, soil: 7.32, building: 5.42, plant: 4.09, elevation: 2.08, object:
1.95, person: 1.93, waterbody: 1.19, vehicle: 0.85, indoor: 0.02

131

C Accuracy-Loss Plots of CNNs During
Hyperparameter Tuning

This appendix provides the full collection of plots showing the learning process of various CNNs
trained for domain prediction.

C.1 Plots on Instances

132

(a) DRN-C26 in configuration-I. (b) DRN-C26 in configuration-II.

(c) DRN-D38 in configuration-I. (d) MobileNetV2 in configuration-I.

(e) MobileNetV2 in configuration-II.

Figure 15: Plots of various models trained on instances of SemanticAircraft.

133

(a) ResNet18 in configuration-I. (b) ResNet18 in configuration-II.

(c) ResNet18 in configuration-III. (d) ResNet18 in configuration-IV.

(e) ResNet18 in configuration-V. (f) ResNet18 in configuration-VI.

Figure 16: Plots of the six different ResNet18 configurations.

134

(a) ResNet34 in configuration-I. (b) ResNet50 in configuration-I.

(c) ResNet50 in configuration-II. (d) ResNet50 in configuration-III.

Figure 17: Four more plots of models trained on SemanticAircraft instances.

135

C.2 Plots on Quadrants

(a) DRN-C26 in configuration-I. (b) DRN-C26 in configuration-II.

(c) DRN-C26 in configuration-III. (d) MobileNetV2 in configuration-I.

(e) MobileNetV2 in configuration-II.

Figure 18: Plots of different models trained on quadrants of SemanticAircraft.

136

(a) ResNet18 in configuration-I. (b) ResNet18 in configuration-II.

(c) ResNet18 in configuration-III. (d) ResNet18 in configuration-IV.

(e) ResNet18 in configuration-V. (f) ResNet18 in configuration-VI.

Figure 19: Plots of all ResNet18 models.

137

(a) ResNet34 in configuration-I. (b) ResNet50 in configuration-I.

(c) ResNet50 in configuration-II. (d) ResNet50 in configuration-III.

Figure 20: Plots of ResNet34 and ResNet50 models trained on quadrants.

138

	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations and Acronyms
	Appendices
	Mathematical Notation
	Context and Neighborhood Statistics
	ADE20K - SceneParsing
	COCO - Things and Stuff
	PASCAL-Context59
	SemanticAircraftV1
	SemanticAircraft

	Accuracy-Loss Plots of CNNs During Hyperparameter Tuning
	Plots on Instances
	Plots on Quadrants

