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Abstract

To aid the high-level path-planning decisions of a mobile robot, the robotics system has to know
not just where the robot is, but also to identify the type and specifics of that place. This is
useful in industrial applications such as surveillance and warehousing robots to restrain them
to certain environments, but also for human-robot collaboration and consumer service robots,
enabling them to find places such as ”kitchen" and get coffee from it, using a semantic map
featuring the different class labels. Customarily, a machine- or deep-learning model such as
a convolutional neural network is trained to correctly classify the current location from a video
stream. However, a neural network requires fine-tuning for proper generalization and is further
limited by the closed-set constraint.

The foundation of this thesis is an extensive state-of-the-art research to identify applications
of neural networks, classic machine learning and control algorithms for state transition modeling
and solving classification problems. The aim is to improve the generalization of an existing
system used at the Queensland University of Technology for place categorization, and to extend
the set of classes known to the system to relax the closed-set constraint. The system in its
original state was only capable of classification via the neural network, which did not generalize
well enough for immediate usage.

The convolutional neural network used for feature extraction of the image stream has been
augmented with trained machine learning models such as support vector machines and multi-
class logistic regression. The usage of these models has extended the classification to include
new place categories that are part of the finite set of classes, has helped to overcome uncer-
tainties from images showing features of multiple classes, and has removed the ambiguities
introduced by the Random Forest of One-vs-All classifiers employed in the original system.

The augmented system outperforms the basic neural network by correctly classifying 90% of
images (98% for the three-class environment) instead of only 78%, including a place that the
neural network was not trained on. In future projects, the images will be captured by mounting
the camera on a mobile robot, the classification will be expanded to all 12 of the distinct places
observable on campus, the semantic mapping system will be improved and the knowledge
acquired will be used to aid high-level path-planning decisions.

Keywords: place categorization, neural networks, machine learning, support vector ma-
chines, mobile robotics



Kurzfassung

Um dem Personal in der industriellen Produktion und Fertigung, aber auch dem Konsumenten
im Privatleben, die Kollaboration mit einem Robotersystem zu ermöglichen, muss der Roboter
nicht nur wissen wo er ist, sondern auch wie man diesen Ort beschreibt. Dazu wird für gewöhn-
lich ein Maschinelles-Lernen oder Tiefes-Lernen Modell verwendet, wie eine faltendes neu-
ronales Netzwerk, um die Örtlichkeit von einer Videoaufnahme klassifizieren zu können. Ein
neuronales Netzwerk benötigt jedoch eine Feinabstimmung, um Generalisierung gewährleisten
zu können. Darüber hinaus ist das Netz auf eine limitierte Anzahl von Klassen beschränkt.

Die Grundlagen dieser Arbeit bildet eine umfassende Stand-der-Technik Analyse, in
der Anwendungen von neuronalen Netzwerken und klassischen Maschinelles-Lernen sowie
Steuerungs- und Regelungstechnikalgorithmen für die Zustandsübergangsmodellierung und
zur Lösung von Klassifizierungsproblemen untersucht werden. Das Ziel dieser Arbeit ist die
Erweiterung eines bestehenden Systems zur Klassifizierung von Orten, in dem die General-
isierung verbessert und die Anzahl der bekannten Klassen erweitert wird.

Das entwickelte System kann rasch die gesammelten Videodaten analysieren und kat-
egorisieren, um dem Roboter ein semantisches Verständnis zu ermöglichen. Das zur
Merkmalextrahierung der Bilder verwendete faltende neuronale Netzwerk wurde mit unter-
schiedlichen Maschinelles-Lernen Modellen erweitert, wie einer Support Vector Machine, Mul-
ticlass Logistic Regression und einem Naive Bayes Filter. Dadurch konnte das Set von
Klassen erweitert, Unsicherheiten bei Bildern mit Merkmalen mehrer Klassen beseitigt und
Mehrdeutigkeiten des Random-Forests von One-vs-All Modellen des ursprünglichen Systems
vermieden werden.

Das erweiterte System überragt die Klassifizierung des neuronalen Netzes, in dem 90% der
Bilder (in der 3-Klassen Umgebung sogar 98%) anstatt 78% richtig zugeordnet werden. In
zukünftigen Arbeiten soll die Klassifizierung auf alle 12 Klassen des Universitätsgeländes er-
weitert und das Kartenerstellungssystem verbessert werden. Außerdem soll die semantische
Karte verwendet werden um komplexe Pfadplannungsprobleme lösen zu können.

Schlagworte: Standortklassifizierung, Neuronales Netzwerk, Maschinelles-Lernen, Support
Vector Machine, Mobile Robotik
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1 Introduction

The field of robotics has shaped industrial and manufacturing processes as well as the daily
life of consumers since its inception. With rapid advancements in technology and science,
the level of automation in the industry and the autonomy in mobile robotics is ever increasing
(Ganek & Corbi, 2003; Siegwart et al., 2011; Brega et al., 2000). Researchers and experts are
convinced that robots and artificially intelligent agents will become essential in the future (Tai &
Liu, 2016a). An agent in this context is any system or part of a system that acts or behaves.
Agents are most prominently defined in (Russell & Norvig, 2003) as computer programs that
”operate autonomously, perceive their environment, persist over a prolonged time period, adapt
to change, and create and pursue goals".

As described in (Tai & Liu, 2016a), intelligent robotic agents are already used in a variety of
real-life applications: warehousing robots, autonomously driven cars, unmanned aerial vehicles,
industrial robots, service robots, etc. Mobile robots are a new and exciting feat of technology
and are of particular interest to the service and healthcare industry, industrial handling and
consumer electronics.

Researchers and engineers are nonetheless faced with some non-trivial unsolved chal-
lenges: both reliable perception and intelligent controls are fundamental components of a mo-
bile robotics system. A considerable portion of this thesis is therefore dedicated to a state-of-
the-art research review, identifying applications utilizing classical machine- and modern deep-
learning algorithms for both control and perception tasks.

1.1 From Perception to SLAM and Semantic Mapping

Mobile service robots, that act in complex indoor and outdoor environments alongside humans,
need to gain understanding of their surroundings that exceeds basic obstacle-avoidance and
autonomous navigation (Sunderhauf et al., 2016). To do this they need to acquire semantic in-
formation about the location, by classifying the individual places of the environment they operate
in (Galindo et al., 2008). The robot can then answer basic localization and SLAM (simultane-
ous localization and mapping) questions such as ”Where am I?" (Borenstein et al., 1996), but
also ”What is the place I am in like?"(Sunderhauf et al., 2016). By gaining an understanding of
the environment this way, the robot is better qualified to make appropriate high-level decisions
when interacting with a person by modulating its behavior accordingly.

The underlying problem of properly labeling samples drawn from a data set is known as clas-
sification in Deep Learning (DL) (Goodfellow et al., 2016) and place categorization (Pronobis
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et al., 2010; Xiao et al., 2016) when the data refers to parts of the environment. Combining
these semantic place labels with the creation of a map is then referred to as semantic mapping
(Pronobis & Jensfelt, 2012; Hemachandra et al., 2014).

1.2 Popular Methods and Their Shortcomings

Numerous methods following different approaches for the classification and mapping sys-
tem are used in state-of-the-art place categorization and semantic mapping for mobile robots
(Pronobis et al., 2010; Pronobis & Jensfelt, 2012; Ranganathan, 2010; Wu & Rehg, 2011). A
convolutional neural network (CNN) is a highly-regarded method of extracting information from
an image, most prevalent in computer vision, and is used in (Sunderhauf et al., 2016) for place
categorization. In their work, the result of the CNN is used for simple top-1 classification, with
no additional fine-tuning to support the generalization. The closed-set constraint of the CNN is
relaxed, but only by employing a set of One-vs-All (OVA) classifiers. The ambiguity and class
imbalance introduced by the OVAs is not taken into account (Bishop, 2016).

1.3 Contributions of the Proposed System

The purpose of this work is to develop a place categorization system employing a combination
of a neural network and machine learning (ML) models. This work builds on the previous work
by (Sunderhauf et al., 2016) and makes improvements in regards to the generalization and
the expendable place categorization. To this end, ML models built on top of the CNN such
as multiclass logistic regression (MLR) and support vector machines (SVM) are evaluated and
used to enable the system to recognize new places with minimal training, allowing life-long
learning for robotic applications that are assumed to encounter unknown environments in their
prolonged autonomous operation. This work therefore provides the following contributions:

1. Departing from the classical approach of Bayesian filters, a research review outlines ML-
and DL models employed in robotic applications.

2. Deriving a concrete method from this review, the application of a state-of-the-art CNN for
classification is shown.

3. To help generalization and to extend the set of classes known to the CNN, three ML
models were trained: multiclass logistic regression, support vector machines and naive
Bayes filter (NBF).

4. The system is lastly tested and evaluated in a workplace-esque indoor environment on
campus and in an industrial setting in the ”digital factory" of the university.

The starting point is Bayesian filters, because mathematical models following Bayesian statis-
tics have given rise to numerous algorithms and filters used in probabilistic robotics.
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1.4 From Bayesian Statistics to Machine Learning and
Deep Learning

Constituting an important stepping-stone in robotics, the basics of probabilistic robotics, state
transition modeling and Bayesian filters are outlined first in chapter 2. Following the restrictions
of the Bayesian filters, attention then shifts to machine learning theory. The applications of
machine learning models are detailed and models used for classification are explained using the
support vector machine as example. Focus then shifts once more to the school of thought called
deep learning. Numerous architectures of neural networks augmented with various algorithms
are detailed for both control and perception tasks in (mobile) robotics.

Having arrived at the work of (Sunderhauf et al., 2016), the developed system is introduced
in chapter 3. The implementation of the three ML models augmenting the Places205 CNN
used by Sunderhauf, are then detailed. Chapter 4 discusses the experimental setup and the
achieved results. Conclusions are drawn and future work is discussed in chapter 5.
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2 Theoretical Background and State-of-the-Art

Following the research of artificial intelligence and its impact on robotics has led to the works of
Thrun et al. most notably the idea of probabilistic robotics (Thrun et al., 2005). In this section,
the basic ideas of probabilistic robotics will be briefly outlined.

2.1 Probabilistic Mobile Robotics

Robotic systems are part of the physical world, in which they perceive information through
sensors and manipulate their surroundings with actuators. In this process there are numerous
factors that contribute to a robots uncertainty regarding its current state (Thrun et al., 2005):

1. The physical world is by nature unpredictable.

2. The perception of a robot is limited because sensors are restricted in the type and amount
of information they can get from their surroundings.

3. The uncertainty from actuators stems from the fact that all robot motors, transmissions
and other mechanical parts are either affected by control noise or wear-and-tear effects.

4. To ensure computational tractability of programs and control algorithms modeling the real
world, various approximations have to be made. This is especially true for highly dynamic
motions of the robot.

The effect of these uncertainties on the belief of a robot, which is the accumulated knowledge
a robot has about its state, and the process of updating this belief as new controls are issued
and measurements are taken is visualized in (Thrun et al., 2005) showing the idea of Markov
localization. It describes how the robot gains confidence in its belief after taking more measure-
ments and how it loses confidence as it moves due to the uncertainties in the movement.

The necessary mathematical models to describe robot movement and perception come from
probability theory and follow Bayes rule and are outlined in more detail in appendix A.1. Also of
note is the concept of state completeness as is explained in appendix A.2.

Let X donate a set of possible states x the robot can be in, Z be the set of individual sensor
measurements z and U be the set of individual control steps u. A state xt shall be defined as
having taken measurement zt, and the latest control being ut−1. Following the assumption of
state completeness, the state xt is therefore a sufficient summary of all that transpired so far,
meaning all controls u1:t−1 and all measurements z1:t. This means that the transition from one
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state xt to another state xt+1 is only influenced by the control taken at that time step ut (Thrun
et al., 2005):

p(xt+1 | x0:t, z1:t, u1:t) = p(xt+1 | xt, ut) (1)

The probability distribution p(xt+1|xt, ut) is known as state transition or motion model. A similar
shape takes the generation model of the measurements under the assumption of state com-
pleteness (Thrun et al., 2005):

p(zt+1 | x0:t+1, z1:t, u1:t) = p(zt+1 | xt+1) (2)

This means that the state xt+1 is enough to predict the measurement zt+1. This relation is called
sensor or measurement model. The state transition model and sensor model together describe
the entire dynamical stochastic system of the robot and its environment and are brought to-
gether in a dynamic Bayes network (DBN). These two models are lastly incorporated into the
general Bayes filter algorithm (figure 1) which requires the previous belief bel(xt), the latest con-
trol action ut and the latest measurement zt+1 to compute a prior belief bel(xt+1) over the set of
possible states and update it with the measurement model to give the posterior belief bel(xt+1).

Algorithm Bayes_filter(bel(xt), ut, zt+1):

for all xt do:

bel(xt+1) =
∫
p(xt+1 | xt, ut)bel(xt)dxt

bel(xt+1) = ηp(zt+1 | xt+1)bel(xt+1)

return bel(xt+1)

Figure 1: General algorithm for Bayes filtering. (Source: edited and taken from (Thrun et al., 2005))

Gaussian filters constitute the earliest tractable implementations of the general Bayesian filter
algorithm. Kalman filters (KF) are one of the oldest and best documented implementations of
a Gaussian filter. All of the filters trade computational tractability with accuracy. While KFs
can only deal with linear systems, Extended Kalman filters (EKF) relax this linearity constraint
by employing methods such as Taylor series expansion to approximate the desired function
that gives the probability distribution of a dependent variable over a known input variable. The
quality of the prediction of an EKF is still dependent on the local non-linearity of the system as
shown in (Thrun et al., 2005).

A popular localization algorithm that uses particle filters instead is Monte Carlo Localiza-
tion (MCL). In MCL, the belief bel(xt+1) is represented by a set of M particles Xt+1 =

{x1t+1, x
2
t+1, . . . , x

M
t+1} (Thrun et al., 2005); samples are then drawn from the motion model using

particles from the present belief. Areas with grouped, higher-valued particles represent states
the robot is more likely to be in. MCL is applicable for both local and global localization prob-
lems and has become well known, although it struggles in scenarios where the location of the
robot abruptly changes due to an external force, since the particles at places other than the
most likely pose slowly fade away (Thrun et al., 2005).
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2.2 Machine Learning Theory

With these limitations in mind, a modern approach employing neural networks to help determine
the state of a robot, was to be found. Neural networks are part of the research field called deep
learning placed in the more general theory of machine learning. Deep learning can be seen as
a way to implement a lot of the machine learning models in a computationally tractable manner.
Furthermore, the deep learning method that was to be derived (the CNN), had to be improved
with some kind of classification model, and machine learning provides a vast amount of models
used for regression and classification.

2.2.1 Classical Machine Learning

Machine learning proposes to use statistical techniques to allow a machine, system or algorithm
to ”learn" with the usage of large amounts of data. Learning in this context means that the
machine progressively improves performance on a specific task (Samuel, 1959). It evolved
from the subject of pattern recognition, is closely related to computational statistics and plays a
major role in the field of artificial intelligence (AI). Machine learning therefore seeks to construct
a model that is able to learn from data and then make predictions on it (Kohavi, 1998).

One major criteria used to classify the type of system is related to the data sets used for
teaching. If the desired output of the model for the given input data is known, the system is
supervised and the approach is called supervised learning. If only parts of the desired outputs
are known or there is some feedback given to the system in a dynamic environment this is called
semi-supervised or reinforcement learning respectively. If no such labels or feedback is given
and the system has to find a structure in the input data by itself it is referred to as unsupervised
learning. The applications are vast and include all tasks that require classification, regression,
clustering, distribution density estimation or dimensionality reduction, the last being used to
fight the Curse of dimensionality, a term coined by Richard E. Bellman in (Bellman, 2013)
originally published in 1957. The curse of dimensionality states, that as the dimensionality of
the observed space increases, the volume increases so fast that the data becomes sparse.

Following a polynomial approach, if we have D input variables, then a general polynomial
with coefficients up to order 3 would take the form

y(x,w) = w0 +

D∑
i=1

wixi +

D∑
i=1

D∑
j=1

wijxixj +

D∑
i=1

D∑
j=1

D∑
k=1

wijkxixjxk. (3)

For a polynomial of orderM the growth in the number of coefficients is likeDM , meaning it might
be hard to fill all the cells in the higher-dimensional space with data. Multiple approaches to
generate the models are being studied such as decision trees, artificial neural networks (ANN),
support vector machines, genetic algorithms, the aforementioned dynamic bayesian networks
and more.

Following the research review given in section 2.3, it was decided to build on the work of
(Sunderhauf et al., 2016) and build a system for the purpose of place categorization. While
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place categorization via classification is somewhat different than state transition modeling, it
can also be used to describe the state of a robot in a context that relates more strongly to the
environment. Additionally, their work made no strong demands regarding the hardware to be
used; in fact the experimentation detailed in chapter 4 was carried out with a simple webcam.
Lastly, they provided existing source code that could easily be expanded upon, making the
project feasible in the short time frame available.

To improve the system regarding its generalization and expand the set of 205 classes to new
on-campus classes, an additional model used for classification was to be developed. Three
different models, all machine learning algorithms, were to be trained, used for predictions and
then evaluated: Multinomial logistic regression, a support vector machine and a naive Bayes
filter. All three of these are very popular choices for solving classification problems and are also
easily implemented in MATLAB with the Statistics and Machine Learning toolbox. An overview
of the most prominent method, the support vector machine, shall now be given.

2.2.2 Support Vector Machines

A support vector machine is a supervised learning model that uses algorithms to analyze data
so solve classification and regression problems. Given a set of training examples from the
training set, each marked as belonging to one or the other of two categories (for binary classi-
fication), an SVM trains a model that assigns new examples from the test set to one category
or the other, making it a non-probabilistic binary linear classifier. Given a training data set of n
points of the form

(x1, y1), . . . , (xn, yn) (4)

where yi be either 1 or−1 (in general, for the binary case), indicating the class to which the point
xi belongs, with xi being a p-dimensional real vector. The goal is then to separate these points
with a (p − 1) dimensional hyperplane (in case the datapoints are not linearly separable) such
that the Hessian normal distance from the group of points to the "maximum-margin hyperplane"
is maximized by minimizing some kind of loss function such as[

1

n

n∑
i=1

max(0, 1− yi(w · xi − b))

]
+ λ‖w‖2 (5)

where
b

‖w‖
(6)

determines the offset of the hyperplane from the origin along the normal vector w, with λ deter-
mining the tradeoff between increasing the margin-size and ensuring that xi lies on the correct
side of the margin. For SVMs the loss function is the hinge-loss

lhng(y) = max(0, 1− t · y) (7)
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where t = ±1 is the intended output and y is the classifier score of the classifiers’s decision
function, and not the predicted class label, and is usually given by

y = w · x+ b (8)

for a linear SVM. The hinge-loss is also a convex function, so many of the usual convex opti-
mizers can work with it. The hinge-loss in SVMs is also closely related to the logistic regression
with the log-loss

llog(y) = ln(1 + e−yt). (9)

When looking at the target functions that minimize the expected risk the optimal classifier is
given by

f?hng(x) =

1 if p(1 | x) > p(−1 | x)

−1 otherwise.
(10)

For the logistic loss, it is the logit function

f?log(x) = ln

(
p(1 | x)

1− p(1 | x)

)
. (11)

Both target functions yield the correct classifier, but the logit-loss actually gives more information
than is necessary.

The extension of the binary SVM to a multiclass SVM can be done by reducing the multiclass
problem into multiple binary classification problems. Methods for this include the One-versus-
All or One-versus-One (OVO) approach or a directed acyclic graph (DAG). In (Crammer &
Singer, 2001) a multiclass SVM method was proposed that casts the multiclass classification
problem into a single optimization problem, rather than decomposing it into multiple binary
classification problems.

Finally, kernel methods are a class of algorithms used for pattern analysis that are able to
operate in high-dimensional feature space without ever having to compute the coordinates of
the data in that space, instead calculating the inner products between all pairs of data, which
is referred to as the ”kernel trick" (Theodoridis et al., 2008). Kernel methods are used to turn
any linear model into a non-linear model by applying the kernel trick to replace the features with
a kernel function. Kernel density estimators are used for non-parameteric density estimation.
Assuming that samples are drawn from an unknown probability density p(x) in D-dimensional
space, the probability mass associated with a certain region R containing x is given by (Bishop,
2016)

P =

∫
R
p(x)dx. (12)

Assuming N observations, the total number K of points falling inside R will be distributed ac-
cording to the binomial distribution (Bishop, 2016)

Bin(K | N,P ) = N !

K!(N −K)!
PK(1− P )1−K . (13)

The desired estimated density at x is lastly given by equation 39.
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Figure 2: AI landscape: An overview of the field of artificial intelligence and its components. (Source:
edited and taken from (Davies, 2016))

2.3 Deep Learning

As mentioned previously, this section provides an extensive state-of-the-art review identifying
various neural network-based approaches for state transition modeling, robot control- and com-
puter vision tasks, starting with the basic premise of artificial neural networks.

With the computational power of computer components such as the graphics processing
unit (GPU) and the central processing unit (CPU) still increasing according to Moore’s Law
(Moore, 2006) and at the same time the relative cost of such hardware decreasing, an exciting
new field has emerged called deep learning. Deep learning tries to solve problems of artificial
intelligence by enabling the computer to learn from experience in terms of a hierarchy of con-
cepts as explained by (Goodfellow et al., 2016) who then go on to say: ”If we draw a graph
showing how these concepts are built on top of each other, the graph is deep, with many layers.
For this reason, we call this approach to AI deep learning." A general overview of the artificial
intelligence landscape including deep learning can be observed in figure 2.

Drawing inspiration from biological neural networks, artificial neural networks or simply neu-
ral networks (NN) are learning algorithms used to generate the aforementioned input-output
models for pattern recognition and statistical structuring of the joint probability distributions be-
tween observed variables. Artificial neural networks are expanded in deep learning with a set of
multiple hidden layers. The approach of NNs can be called a heuristic one. They approximate
the stochastic components of the system with some kind of mapping-function while employing
a correction method such as reward, error or negative log-likelihood by updating some of their
parameters. The basic layout of an ANN is given in figure 3. Every input value is assigned an
input neuron x1...k in the input layer forming the input vector x where k is the number of different
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Figure 3: General layout of an artificial neural network : On top the basic layout and on the bottom
specifics regarding the individual components. (Source: TeX code used from (Medina, 2013))

input variables. The values are duplicated and sent to all the nodes in the hidden layer. Before
entering the node each input is multiplied with a weight variable w1...k forming the weight vector
w. The weighted inputs w0 · x0 through wk · xk are then summed up with the corresponding
bias b and fed into the activation function f(·), usually a sigmoid function acting as a smooth
threshold that maps the received input to a corresponding output y (Smith et al., 1997):

sig(x) =
1

1 + e−x
. (14)

In a mathematical sense the weights influence the ”steepness", meaning the first derivative of
the activation function.

sig′(x) = s(x)[1− s(x)] (15)

The bias neurons b are placed in an additional layer that has no previous connections and
only feeds the neurons in the hidden layer(s). The point of the bias is to shift or translate the
sigmoid curve along the input axis to allow the function to be more flexible. All bias neurons
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output 1.0 and are connected with an extra set of weights. The output of a single sigmoid neuron
then follows

y = sig(w · x+ b) (16)

or to put it explicitly:

y =
1

1 + exp

(
−
∑
k

wkxk − b
) . (17)

A similar activation function to the sigmoid is tanh, a scaled sigmoid function which is bound by
[−1, 1] and features much steeper derivatives.

tanh(x) = 2sig(2x)− 1 (18)

Both of these function face the ”vanishing gradients" problem where the value y changes very
little with change in x if x is near the part of the sigmoid or tanh-function where the derivative is
almost 0. This leads to the neural network being slow to learn for such inputs (Sharma, 2017).

A feed forward neural network (FFNN) was the first and simplest type of ANN devised
(Schmidhuber, 2014). The connections between the neurons do not form a cycle, like in a
recurrent neural network (RNN) (Zell, 1994). A FFNN in its simplest kind is a single-layer per-
ceptron, with only single a layer of output nodes containing the activation function. A multi-layer
perceptron (MLP) on the other hand, features multiple layers, connected in a feed-forward way
in a FFNN.

Looking at the applications of a FFNN for robotics tasks, one such network was compared
with a classic EKF for the purpose of state-estimation of a 6-degrees of freedom (DOF) ma-
nipulator in (Chouraqui & Benyettou, 2009). The number of neurons in the hidden layer was
determined empirically. The experiments showed that the FFNN mean-error was consistently
lower than using the EKF, for both pose- and velocity estimation. A Fuzzy adaptive resonance
theory neural network (FuzzyART-NN) was used by (Lameski et al., 2009) for position estima-
tion of a mobile robot in an indoor environment. The results were only moderately promising
(63% correct labeling).

The different types of more sophisticated NN architectures are now explained on numerous
applications in (mobile) robotics. Each individual chapter follows the same layout: First the
architecture is outlined, then applications employing this NN are given. We start of with the
convolutional neural network, because it has seen large amounts of success recently for both
computer-vision tasks, as well as policy optimization problems as part of reinforcement learning.

2.3.1 Convolutional-Neural-Networks

A convolutional neural network is a class of deep FFNN that is widely used for analyzing visual
imagery by extracting certain features from the images. They use a variation of a MLP designed
to require minimal preprocessing. Unlike a regular ANN, the hidden layers in a CNN consist
of further convolutional layers, pooling layers, fully connected layers and normalization layers.
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Figure 4: CNN architecture: The basic layout and connectivity of the layers in a convolutional neural
network. (Source: edited and taken from (Aphex34, 2015))

Mathematically speaking the process in a CNN is a cross-correlation rather than a convolution.
The convolutional layer’s parameters consist of a set of learnable filters or kernels with a small
receptive field that extend thought the full depth of the input volume. During the forward pass,
for every filter the dot product between the filter and the input is computed, resulting in a stack
of 2-dimensional activation maps that form the full output volume. The basic architecture of a
CNN is shown in figure 4.

CNNs and their ability to process large amounts of data in a relatively short time period with-
out significant information loss, made them a natural fit for all applications requiring robust, and
fast analysis of visual imagery. This has made them the premier choice for feature extraction
and categorization of visual information collected from an autonomous robot (Tai & Liu, 2016a).
The most prevalent application being the visual place categorization (VPC) problem, that refers
to the categorization of the semantic category of a place in the environment surrounding the
mobile robot (Yang & Wu, 2012).

A CNN was used in (Sunderhauf et al., 2016) for place categorization, in numerous works
such as (Khan et al., 2017) for feature extraction and further as a function approximator in
reinforcement learning that will be discussed in detail in section 2.3.3. The work of (Sunderhauf
et al., 2016) constitutes the foundation for this work; the CNN they used was the Places205
network from the Massachusetts Institute of Technology (MIT). As already mentioned, the CNN
required fine-tuning to properly generalize and further an extension of the limited set of 205
classes was desirable. We will now look at the class of wavelet neural networks, a simple
extension of ANNs that can be easily applied to problems in a two-dimensional cartesian state
space, as is common for mobile robots.

2.3.2 Wavelet-Neural-Networks

Wavelet neural networks (WNN) are very similar to classic ANNs, but the standard sigmoid
activation function is instead replaced by a function drawn from a wavelet basis. A wavelet is
a ”small wave" that grows and decays over a finite period, contrary to the harmonic functions.
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Unlike the fourier transform (FT) the wavelet transform is able to extinguish between stationary
and non-stationary signals. A family of wavelets can be generated by translating and dilating
the base wavelet function. The output of a single neuron is given by

ψλ,t(u) = ψ
(u− t

λ

)
(19)

where t is the translation parameter and λ is the dilation parameter. These are also learned by
the network, whos output can be written as follows with M being the number of neurons in the
hidden layer.

y(u) =
M∑
i=1

wiψλi,ti(u) + b (20)

For practical applications of wavelet neural networks in mobile robotics a discretization of the
state space is assumed. They are then easily applied for path-planning problems in Cartesian
2D-space: Each possible state of the mobile robot in space, defined by the variables x and y

for the 2 translatory DOF along the axes and θ for the rotation about its own axis along z, is
one neuron in the WNN. Assigning values to the excitatory inputs of the target location and
inhibitory inputs of obstacles generates a propagating wave through the neural network. The
most active neurons are then the different states the mobile robot should travel along to get
from start to finish.

A wavelet-NN is used in (Yang & Meng, 2001) for dynamic collision-free trajectory generation.
It proposes a self-organized map (SOM) generated by the network. A SOM is a type of ANN
trained via unsupervised learning to produce such a low-dimensional, discretized representa-
tion of the state space; a map. The model given by equation 20 is incorporated into their main
model, a so called shunting equation.

dxi
dt

= −Axi + (B − xi)
(
[Ii]

+ +
k∑
j=1

wij [xj ]
+

)
− (D + xi)[Ii]

− (21)

Equation 21 characterizes the dynamics of the i-th neuron with k being the number of
neighboring neurons of the i-th neuron, A, B and D being nonnegative constants represent-
ing the passive decay rate, the upper and lower bounds of the neural activity respectively,
[Ii]

+ +
∑k

j=1wij [xj ]
+ and [Ii]

− being the excitatory and inhibitory inputs and Ii being an exter-
nal input to the i-th neuron defined as

Ii =


E if there is a target

−E if there is an obstacle

0 otherwise

(22)

where E � B is a very large positive constant. Functions [·]+ and [·]− are defined as
max{a, 0} and max{−a, 0} respectively. The connection weight wij from the j-th to the i-
th neuron is calculated using a monotonically decreasing function on the Euclidean distance
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between the position of the two neurons in state space S. Parameters A, B, D and E can be
used to adjust the safety of the robot, regulating by how much an obstacle should be avoided.
The target location globally attracts the robot while obstacles prohibit the neuronal activity only
in a neighborhood of neurons; it therefore cannot get stuck in local minima. The stability and
convergence of the model was proven using the Lyapunov stability theory. With this model some
simple target chasing was possible. Problematic is that the complexity rises linear with the NN-
size O(n) but non-linear with the number of degrees of freedom. (Lebedev et al., 2018) take a
very similar approach while employing a discretized hypercube for the configuration space with
dimensions according to the DOF of the objects, ie. mobile robot and obstacles.

In (Syed et al., 2014) a more sophisticated approach to wavelet-neural networks is taken. It
builds on the premise of the modified pulse coupled neural network (MPCNN). In MPCNNs a
neuron i fires only if some neuron j in its neighborhood Ni fires and this sets neuron i as child
neuron to fire later. All neurons only fire once and the firing is governed by their internal activity
U(t) (Syed et al., 2014)

U(t) =


dUi(t)
dt = Fi + CLi for t > tN

P
i

Ui(t) = 0 for t ≤ tNP
i

(23)

where C is a constant, tN
P
i is the parent firing time and Fi(t) and Li(t) are the feeding and

linking fields respectively. Energy of the neuron is constantly compared with the threshold
function θi(t).

The proposed guided autowave pulse coupled neural network (GAPCNN) differs from the
MPCNN model by providing a different threshold function that also takes the distance λ from the
target into account while constraining the directional propagation of the autowave by employing
an angle modification in the differential equation of the internal activity Ui(t) (Syed et al., 2014).
This is done by modifying the feeding field of the model according to a directional constraint
ψ that is calculated using the principle angle of the robot from the target. They combine this
model with a vision model and show how it outperforms A* path-planning but no uncertainties
of the control and measurement model are taken into account.

While wavelet neural networks are easily applied to two-dimensional problems, attention in
recent research has instead shifted away from them towards Reinforcement learning (RL) and
the idea of Q-learning. RL has become fairly well known for solving various control- and path-
planning problems, with CNNs being successfully applied as function approximators.

2.3.3 Deep Reinforcement Learning and QLearning

With deep Q-Networks (DQN) (Mnih et al., 2015) being the first to yield stabilization for large-
scale reinforcement tasks using CNNs, they have raised interest in research and applications
of deep reinforcement learning (DRL) methods (Tai & Liu, 2016a). The basic premise of (deep)
RL algorithms is the formalization of a robotics task as a Markov Decision Process (MDP) thats
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part of a Markovian chain as outlined in section 2.1. An MDP is a 5-tuple
〈
X, U , p, R, γ

〉
with

R being the set of all possible rewards and γ being a discount factor in the range of
[
0, 1

]
.

Thus a robot takes an action ut in state xt, receives a reward Rt+1 and transits to the next state
xt+1 following the transition dynamics p(xt+1 | xt, ut). In robotics MDPs are considered to be
episodic and the problem of partial observability is overcome by either stacking N observa-
tions xt−N+1, xt−N+2, . . . , xt to represent xt or by feeding xt into a RNN to satisfy the Markov
property.

Reinforcement learning agents are designed to learn from interactions how to behave to
achieve a certain goal (Sutton & Barto, 1998) or to learn how to maximize the expected dis-
counted return where the discounted return (Tai & Liu, 2016a) is defined as:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · ·+ γT−t−1RT =
T∑
k=t

γk−tRk+1 (24)

Furthermore the policies π and µ are introduced where π(u | x) is the stochastic policy with ac-
tions drawn from the probability distribution defined by π(u | x) and µ(x) being the deterministic
policy. The state-value function V π(x) gives the expected return when starting from state x and
following the policy π:

V π(x) = Eπ

[
T∑
k=t

γk−tRk+1 | xt = x

]
. (25)

The action-value function Qπ(x, u) gives the expected return by taking action u from state x,
then following π

Qπ(x, u) = Eπ

[
T∑
k=t

γk−tRk+1 | xt = x, ut = u

]
(26)

and thus defines the optimal value function Q∗(x, u):

Q∗(x, u) = max
π

Qπ(x, u) (27)

and finally the optimal policy π∗(u | x):

π∗(u | x) = argmax
u

Q∗(x, u). (28)

A fairly simple reinforcement learning neural network (RLNN) was used in (Huang et al., 2005)
that combined a classic three-layer back-propagation neural network (BPNN) with an action
selection according to the Boltzmann distribution

p(u | x) = e(
Q(x,u)
T

)∑
b∈U

e(
Q(x,b)
T

)
(29)

where T is a slowly decreasing parameter that determines the probability of selecting non-
greedy actions. They used this RLNN to develop a training algorithm that teaches a mobile
robot to avoid obstacles during prolonged exploration times.
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Reinforcement learning algorithms can be categorized into value-based and policy-based
approaches, as well as combinations and augmentations of the two called actor-critic methods.
Details for each of these families of algorithms are given in appendix B.

While reinforcement learning constitutes a very recent research development, the group of al-
gorithms called model predictive controls (MPC) have long been used to solve control problems.
MPC has its roots in process optimization of industrial sites, refineries and other applications
where the state of the process can easily be identified according to process parameters.

2.3.4 Model Predictive Controls

All of the methods discussed so far (with the exception of (Levine & Koltun, 2013)) are model-
free meaning that the agent is not provided with the underlying transition model, which in the
case of robotics is often a complex non-linear dynamics model. The advantages and disadvan-
tages have already been discussed; the usage of MPCs shall be outlined briefly. MPC is an
advanced method of process control that seeks to optimize processes while satisfying certain
constraints. At a specific time-step t the current state is sampled and a cost minimizing control
strategy is computed via Euler-Lagrange equations following

Lx(·)−
d

dt
Lẋ(·) = 0 (30)

until t+ T but only the first step of this strategy is implemented until re-sampling and repetition
of the calculations. This prediction horizon is iteratively shifted forward making MPC a receding
horizon control, whereas linear-quadratic regulation (LQR) only optimizes in a fixed time window
and then uses this single optimal solution for the whole horizon (Wang, 2009). This means that
MPC allows real-time optimization although the obtained solution is usually suboptimal since
the time window is comparatively small to the whole horizon.

A fairly complete study was made by (Pretorius et al., 2014) that compares the usage of
FFNN with physics-based kinematic and dynamic models for the purpose of state prediction.
The results show the high computational efficiency and accuracy of ANNs for prediction of a
differentially-driven mobile robot in 2D-space.

In (Finn & Levine, 2017) a deep predictive model for visual prediction previously developed in
(Finn et al., 2016) was combined with concepts of MPC to teach a 6-DOF robot to push objects
to a target location. The MPC algorithm generates a sequence of actions that maximizes the
probability of reaching a certain Gaussian distribution

pM(It+1 | It−1:t, xt−1:t, ut) = N (M(It−1:t, xt−1:t, ut)� It, σ2I) (31)

over target pixel locations at the end of the MPC horizon, where σ2I is the constant diagonal
covariance andM gives the mean. While the results were fairly promising, the assumption that
pixels (i.e the robot) always moves slowly limits the practical applicability of the system.

In (Howard et al., 2010) the basic A* regional motion planner was enhanced with a RHMPC
that consists of a trajectory follower formulated as a control problem with a motion model that
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seeks to minimize a penalty function. The experimental results showed only partial success,
with just a 7, 2% accuracy increase over the basic A*.
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3 Methods and Implementation

Departing from Bayesian filters for the purpose of state transition modeling as part of probabilis-
tic robotics, neural network approaches for state transition modeling were to be found. Having
followed this research has led to various kinds of neural networks used for different applications
in (mobile) robotics (as was detailed in section 2.3), but very few for transition modeling specifi-
cally and even fewer that provided source code which could be used as foundation for this work.
The work of (Sunderhauf et al., 2016) provided an interesting contribution to mobile robotics in
the form of place categorization and semantic mapping, based on a successful neural network
model tested on multiple benchmarks. To ensure this project would be finished on time, it was
therefore decided to follow their approach and build on it.

The primary approach of this work thus builds on the premise of using a convolutional neural
network for place categorization via image classification. This is somewhat different from using
a Bayesian filter for state transition modeling and is closely related to SLAM-tasks: knowledge
about the state of the robot is obtained via localization with known correspondences, but the
robot also learns about its environment in a semantic context. Combining this knowledge into
a semantic map then enables path-planning for the mobile robot on a level that supersedes
simple coordinate system approaches.

While many of the discussed approaches for state transition modeling assume local linearity,
simple discretization or low dimensionality of the action space, prior knowledge about the envi-
ronment or a complex dynamical model, using the global information that can be gained from
extracting features from a stream of camera images of the surroundings is a simple replace-
ment.

In the following sections the CNN used for place categorization is first outlined, followed by
explanations regarding the implementations of the three ML models that have been used to
improve and extend the original system.

3.1 Convolutional Neural Network for Place Categorization

This section provides details regarding the architecture of the employed CNN and the used
database. The CNN-database combination Places205 was developed at the MIT for the
purpose of place categorization and outperformed the popular AlexNet by achieving roughly
8% higher accuracy with top-1 classification on the SUN-397 benchmark (54.3% compared to
46.2%) (Sunderhauf et al., 2016). The Places205 network was published by (Zhou et al., 2014)
and it is still the state-of-the-art neural network for place categorization with the newer version
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Figure 5: Architecture of the Places205-CNN: The ReLU layer after every convolutional layer has been
omitted. The stride parameter determines the size of the steps the filter takes during convolu-
tion.

Places365 putting up less accurate results thus far. It follows the same architecture as AlexNet,
with the difference, that the Places205 network was specifically trained on a database of 205
different place categories for the purpose of place categorization. A sketch of the network archi-
tecture can be observed in figure 5. The implementation takes places Caffe (Zhou et al., 2014)
and the interfacing is done in ROS similar to the implementation in (Sunderhauf et al., 2016)
with a few key differences.

The layers of note in the CNN are the last class-independent layer ”FC7", followed by
the class-dependent layer ”FC8" and lastly a softmax output layer. The output vectors are
yFC7 ∈ R4096×1, yFC8 ∈ R205×1 and yOut ∈ R205×1 respectively. The cross-correlation between
the individual features or classes is assumed to be low and they are further conditionally inde-
pendent. In the work of (Sunderhauf et al., 2016) 11 classes were assumed to be encountered
on the university premise and the values held by the 11 neurons in the output layer correspond-
ing to those classes were extracted, renormalized and treated as likelihood-estimators. The
renormalization was done dividing each individual element with the sum of the elements in the
extracted vector:

y′Out,11 =
yOut,11,i

11∑
j=1

yOut,11,j

for i = 1, . . . , 11. (32)

While the output of a neural network is never a probability value (NN are optimizations with
non-linear, non-probabilistic functions) and instead only a value relating the activity of a certain
neuron to a given input, squashing the output values between 0 and 1 in the softmax-layer
allows the usage of probabilistic reasoning (Pearl, 2014). In the softmax-layer a K-dimensional
vector z of arbitrary real values is squashed to a K-dimensional vector σ(z) of real values
where each entry is in the range (0, 1) and all entries add up to 1:

σ : RK →

{
σ ∈ RK | σi ≥ 0,

K∑
i=1

σ1 = 1

}
(33)
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σ(z)j =
ezj

K∑
k=1

ezk

for j = 1, . . . ,K. (34)

Due to the extraction of the 11 values additional information useful for classification is lost. For
example a campus (as one the 11 classes) is assumed to have some similarities with a driveway
and perhaps a yard (not being part of the 11 classes), while an office does not.

On the other hand, if the CNN is meant to do the classification, restricting the number of
possible classes a sample can belong to, assists the classification. For example if the vector
yOut were to carry the value 0.7 for the class ”closet" but 0.1 for the class ”office" and 0.05 for
”kitchen", the sample would be classified as office (following top-1 classification), since a closet
is assumed to not be encountered. This ”probability distribution"’ over the 11 classes is seen as
the final result.

In this work the complete output-vector yOut ∈ R205×1 is instead continuously extracted from
the CNN to create the design-matrix m205 ∈ Ru×205 and corresponding target-vector t205 ∈
Ru×1 respectively, where u is the number of analysed frames obtained from the CNN given a
specific video as input. The entire data set was split with 75% of the data forming the training
set and 25% making up the test set. The data-set and target-vector are then used to train the
following models for the purpose of class-prediction.

The three ML models that were trained to classify the places in addition to the CNN will
now be highlighted (as explained in section 2.2.1). First off is the naive Bayes filter, since it is
also historically one of the first algorithms to see practice for classification purposes (Russell &
Norvig, 2003). After explaining some general ideas of naive Bayes filters, the implementation
in MATLAB will be detailed.

3.2 Naive Bayes Filter

Naive Bayes filters are probabilistic classifiers that are based on the Bayes’ theorem or Bayes’
rule outlined in appendix A.1 and assume strong (naive) independence between the features of
the observations. Although this assumption is often violated in practice, naive Bayes classifiers
usually yield posterior distributions that are robust to biased class density estimates, especially
if the posterior is 0.5 (the decision boundary) (Friedman et al., 2001). Since each feature xi is
assumed to be conditionally independent of every other feature xj for j��=i, given the category
Ck

p(xi | xi+1, . . . , xn, Ck) = p(xi | Ck) (35)

with n being the number of features and K being the number of classes, the joint model can be
expressed as

p(Ck | x1, . . . , xn) = p(Ck)

n∏
i=1

p(xi | Ck), (36)
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with the extended form of the Bayes’ rule, as is used by MATLAB (The MathWorks, 2018a),
given by:

p̂(Ck | x1, . . . , xn) =
π(Ck)

n∏
i=1

p(xi | Ck)

K∑
k=1

π(Ck)
n∏
i=1

p(xi | Ck)
, for every k = 1, . . . ,K (37)

where π(Ck) is the prior probability that a class index is k. The naive Bayes classifier then
combines this model with a decision rule. A common rule is to pick the most probable hypoth-
esis; this is known as the maximum a posteriori (MAP) decision rule. The classifier then is the
function that assigns label ŷ = k for some k according to:

ŷ = argmax
k∈{1,...,K}

p̂(Ck | x1, . . . , xn). (38)

The MATLAB function fitcnb (The MathWorks, 2018a) was used to create the trained multiclass
naive Bayes model, and the option OptimizeHyperParameters was again used to optimize the
hyperparameters. The property Distribution is used to specify the estimation used for model-
ing the probability density function (PDF) of the predictor variable distributions. The following
parameters yielded the best results:

1. Distribution: Kernel (see (Bishop, 2016), pg.122)

2. Kernel function type: normal

3. Bandwith: 0.019527

A kernel distribution is a nonparametric representation of the PDF. The kernel density estimator
is the estimated PDF of a predictor variable and for any real values of x, the estimator follows
(The MathWorks, 2018b)

f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
, (39)

where x1, x2, . . . , xn are random samples from an unknown distribution, n is the sample size,
K(·) is the kernel smoothing function, and h is the bandwith. The kernel smoothing function,
option ”normal", uses the Gaussian distribution:

f(x) =
1√
2π
e(−0.5x

2) (40)

The steps of fitcnb are as follows:

1. Estimate the densities of each feature variable of the predictors for each class following
equations 39 and 40. This gives a matrix of kernels mkernels ∈ RK×205 with each kernel
estimating the density distribution of a specific feature vector for that class.

2. Model the posteriors according to equation 37.

3. Classify an observation according to equation 38.

The second ML model called logistic regression, how it is used for classification and its ex-
pansion to the multiclass case will now be hightlighted.
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3.3 Multinomial Logistic Regression

Multinomial (or multiclass) logistic regression is an extension of the logistic regression for mul-
ticlass problems. It was first developed by David Cox (Cox, 1958) and it is used to estimate
the parameters of a logistic model. The log-odds of the probability of an event to occur is a
linear combination of independent variables x. For binary classification the categorically dis-
tributed dependent variable y can be either 0 or 1. In multiclass logit the dependent variable
can take one of multiple discrete outcomes. If the model is parameterized by θ and the (x, y)

pairs are drawn uniformly from the underlying distribution then the model can be described with
the following equation:

lim
N→+∞

N−1
N∑
i=1

log p(yi | xi; θ) =

∑
x∈X

∑
y∈Y

p(X = x, Y = y)

(
− log

p(Y = y | X = x)

p(Y = y | X = x; θ)
+ log p(Y = y | X = x)

)
=

−DKL(Y ‖Yθ)−H(Y | X).

(41)

H(Y | X) is the conditional entropy and DKL the Kullback-Leibler (KL) divergence. By max-
imizing the log-likelihood of a model, the KL divergence from the maximal entropy distribution
is minimized, thus searching for the model that makes the least number of assumptions in its
parameters.

The multinomial logit model was created using the Pattern Recognition and Machine Learning
Toolbox from the MATLAB file exchange (Chen, 2018), a package implementing some of the
algorithms described in the book (Bishop, 2016). The function logitMn.m was used to create and
train the model and logitMnPred.m was used to make predictions using the test set. LogitMn
takes the training set following the design matrix, and the correspoding target vector as outlined
in section 3.1. The regularization paramter λ, being the only adjustable parameter, was left at
its default value, although it gets updated as the model learns:

1. λ: 1 · 10−4 (default)

One of the most important steps is the update of the parameter vector w following the Newton-
Raphson iterative optimization scheme, which uses a local quadratic approximation to the log
likelihood function. For minimizing E(w) the update takes the form (Fletcher, 2013)

wnew = wold − H−1∇E(w) (42)

where H is the Hessian matrix whose elements comprise the second derivatives of E(w) with
respect to the components ofw (Bishop, 2016). The function outputs a trained model structure.
This structure is then used in the function logitMnPred together with a matrix comprising the
test set for predictions. The output is a vector with predicted labels for every observation from
the test set as well as the predict probability for each class. This output vector is of the form
ypred ∈ Ru×1 with every entry {yi | i ∈ [0, u]} being a whole number in the range of [1, k] where
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k is the number of classes. To calculate the accuracy of the model given the test data, a test
target vector ypred-target was created and compared to ypred according to the following pseudo-
code equation:

acc-logit = 100− 100 ·
(
length(nonzeros(abs(ypred,i − ypred-target,i)))

s

)
for every i = 0, . . . , s

(43)
where s is the size of the test set. The input matrix and input vector as well as the output vector
holding the predicted class labels take the same shape using the SVM and the naive Bayes
filter and the accuracy calculation always follows equation 43 (with additional typecasting).

The third and last of the developed models is the support vector machine. Support vector
machines are a very popular method for solving classification problems, that can easily be
extended to the multi-class case.

3.4 Support Vector Machines

SVMs try to classify data be separating the data points with a line, or a hyperplane in higher-
dimensional space. They can also perform non-linear classification using the kernel trick. Since
the underlying methods of support vector machines were already explained in section 2.2.1,
some specifics regarding the implementation of the SVM as part of the MATLAB class Classifi-
cationECOC (ECOC = error-correcting output code) (Allwein et al., 2001) are now highlighted.
The function templateSVM was used to create a learner template suitable for ECOC multiclass
models; the function has multiple configurable options:

BoxConstraint and KernelScale
BoxConstraint and KernelScale (The MathWorks, 2018c) are the MATLAB names for the hy-

perparameters C and γ respectively, since the trained SVM is a soft-margin C-SVM. The C

parameter is a regularisation parameter that controls the maximum penalty imposed on margin-
violating observations which helps to prevent overfitting. It controls how strict the hyperplane
should divide the sets of data points belonging to separate classes and how many examples
are accepted to be on the wrong side of this soft margin. The parameter γ is only relevant for
Gaussian kernel functions; it is the free parameter of the Gaussian radial basis function (RBF):

K(xj , xk) = exp(−γ‖xj − xj‖2), γ > 0. (44)

Coding and SaveSupportVectors
The Coding property decides the coding scheme, either One versus One or One versus All

(The MathWorks, 2018c). The OVA strategy trains a single classifier per class (K classifiers in
total for K distinct classes), and all samples from that class are positive, while all other samples
from all other classes are combined into the ”rest" and treated as negative. This means, that
even if the class distribution is balanced in the training set, the binary learners see unbalanced
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distributions because the set of negatives is much larger than the set of positives. This problem
increases with the number of distinct classes. The OVO scheme instead trains K(K−1)

2 binary
learners, with one class being positive, one class negative and ignoring the rest. This does not
cause a class imbalance problem, since the samples from each individual class are roughly
equal. The SaveSupportVectors property is lastly used to save the trained support vectors,
since the number of vectors carries information regarding the achieved generalization.
Using the OptimizeParametersOption has yielded the following optimal (feasible) parameters:

1. Coding: onevsall

2. BoxConstraint: 75.786

3. KernelScale: 0.7278

4. KernelFunction: RBF
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4 Results and Discussion

The system was evaluated on 5 of the possible 12 observable places on university campus:
the digital factory resembling an industrial setting as the Places205 class assembly_line, a big
lecture theater as auditorium, a corridor, a kitchen and an office. To show the capabilities of the
system to extend the limited set of 205 classes, data of an additional place was gathered not
known to the CNN: a door. The videos were captured using the ROS wrapper for Intel®Real
SenseTM devices and a BlasterX Senz3D camera, carried around by hand. After storing the
videos in a bagfile, playing the bagfile and analysing the stream with the CNN, the training-
and test-set and respective target-vectors were created as described in section 3.1. Before
training began in MATLAB, the distributions in the data sets were plotted using a Python script
(see appendix 3) and can be observed in figure 7 and figure 8 respectively, while figure 6 gives
the legend for the two figures. Ideally only 5 peaks would be observed, while the spread for the
door class was unknown. A few observations, following the analysis of the training- and test-set
distributions from figure 7 and 8, can be made:

1. The sets were drawn from the design matrix fairly evenly, with similar distributions.

2. A total of 8 significat peaks, and a few outliers in other classes, can be observed: 5 from
the expected classes and 3 further peaks in closet, kitchenette and staircase.

3. The peak in kitchenette is due to the the strong similarities of the kitchen and kitchenette
data set in Places205 and is therefore not problematic.

4. A lot of samples from the lecture theater recording, especially in the training set, share
strong similarities with a staircase. This would be a problem for the CNN classification if
it was not constrained to the 5 classes, but constraining it helps the robustness in such
cases. Inclusion of the class staircase would lead to large misclassifications from the
CNN.

5. The peak in closet actually features samples from both the office and the door recordings.
This is not problematic for the CNN classification, since the CNN does not know of the
class door. This does cause some misclassifications with the trained ML-models though,
as will be discussed shortly.

6. The samples from the recording in the digital factory are fairly noisy, in the sense that the
distribution is spread very evenly.

7. The peak in corridor is very robust, with very few samples showing features of another
class.
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Figure 6: Legend : The legend featuring the different label names, colour schemes and peak locations
for figures 7 and 8.

Figure 7: Training-set spread : Visualization of the vectors forming the training-set.

Figure 8: Test-set spread : Visualization of the vectors forming the test-set
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Table 1: Accuracies for the different classification models used : The bottom row gives the average ac-
curacy. Since the number of recorded frames was nearly equal, no weighting had to be done.

Classification results

Environment CNN-5 MLR SVM NBF

digital factory 54% 99% 97% 92%

lecture theater 62% 88% 89% 81%

corridor 100% 93% 93% 95%

door – 100% 100% 100%

kitchen 100% 89% 87% 83%

office 75% 63% 73% 79%

total average 78.2% 88.7% 90.2% 88.27%

In figures 7 and 8 the Y-axis gives the squashed value held by every single neuron in the
softmax layer over the X-axis showing the 205 different classes. The numbers 1 through 8 along
the X-axis further specify the locations of the peaks and the colours of the points correlate to
the place the video was captured in.

As already mentioned in section 3.1, restricting the number of observable classes helps the
classification with just the CNN. Nevertheless, the CNN classification is less accurate as all
developed learning models, as can be seen in table 1, showing the final evaluation results.
It shows the accuracy of the classifications models, that is top-1 accuracy for the CNN, and
the accuracy calculations following equation 43 for the ML-models. It should be noted, that
the accuracy of the CNN cannot so easily be compared to the accuracies of the ML-models
for two main reasons: If an image carries known features correlating to multiple of the 205

classes known to the CNN, it is understandable that the network struggles with classification,
while the ML-models are trained with these ”none-correspondences". On the other hand, if an
image shows outliers, meaning features of a class not part of the limited five-class set, the CNN
is not influenced, while this causes issues with the ML-models. Also, since the door carried
similarities to a closet and the office did as well, the models misclassify while the CNN is again
not influenced.

The CNN yields robust classification for places with features that are easily distinguishable
from the other of the 5 classes. As soon as the spread becomes more leveled or multiple peaks
arise, the CNN struggles with classification even in the restricted set of 5 classes, only posting
a 54% accuracy in the environment of the digital factory. It manages to post a total classification
accuracy of just 78.2%, with the classification relying strongly on samples only featuring one
class. All three of the ML-models yield an average classification accuracy of 88 to 90% giving
strong results in the digital factory and only really struggling to categorize the office.
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Figure 9: SVM confusion matrix : Normalized confusion matrix following the SVM-model

Looking at the detailed results provided in appendix C, or the normalized confusion matrix
of the SVM in figure 9, this comes from the fact that a fair number of samples from the office
environment were classified as a door, resulting from the similarities of both classes to the
closet class. During parts of the recording in the office, the camera was pointed directly at
a cabinet and much less at the typical computer desk and chair setup. This largely flat and
grey cabinet shared similarities to the later recorded grey door, that didnt have any significant
features. Appendix C also shows results of the classification amongst only three classes: au-
ditorium, corridor and kitchen, with the ML-models averaging an accuracy of 98 to 99%, once
again showing the problematic impact of the similarities between the door and office data. The
confusion matrix in figure 9 shows the correct and false classifications of the most accurate
model, the support vector machine. The confusion matrices of the MLR and the NBF can be
seen in appendix C.2.

Lastly, figure 10 shows an image captured in the digital factory of the university that was to
be classified as ”assembly line". It can be seen that the ML-models confidently predict the
correct label, while the CNN struggles since the image shows features of multiple places. This
image is part of a video that was created to visualize the predictions using the captured videos
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Figure 10: Frame from the digital factory : An image captured in the digital factory with the likelihood
spread given by the CNN at the top, and the predicted labels of the three ML models at the
bottom.

themselves. The predictions sometimes jump between various classes, a problem that can be
solved by taking the predicted labels as sensor readings and applying a Bayes filter, to limit
these abrupt place changes, that are physically impossible (temporal coherence).

With the system having correctly labeled 100% of the samples from the door class, it is shown
that the classification can easily be extended to environments not part of the 205 places. This
is also true for environments without strong peaks in the distribution, such as the digital factory,
that the CNN struggles with. It should also be noted, that since the number of distinct classes is
low and the data sets are of equal size, the problem of class imbalance due to the OVA scheme
is relatively small.
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5 Conclusion

This thesis introduced a straight-forward addition to an accurate and inexpensive system used
for place categorization. An extensive research identifying the applications of neural networks
used for robotics applications, led to finding the system proposed by (Sunderhauf et al., 2016).
Having sucessfully used the Places205 convolutional neural network as the foundation for fea-
ture extraction, multiple machine learning models were trained for the purpose of image classi-
fication. These include a multinomial logistic regression, a support vector machine and a naive
Bayes filter.

The performance of these models was evaluated and compared to the classification using
only the neural network. All three models significantly outperformed the CNN, posing an ac-
curacy of roughly 90% in the extended, six-class environment and around 98 to 99% for the
three-class scenario, in contrast to the 78% from the CNN. The accuracy drop using the models
between the two different data sets can be attributed to suboptimal video recordings.

The system makes no strong hardware or software demands, only using a simple webcam
and open source software. The semantic information obtained is an important enabler of more
advanced robotics tasks, especially human-robot collaboration, since humans describe places,
rooms and goals not with coordinates, but place labels. To this end, the system was success-
fully tested in an industrial and office-esque environment, proving its usability for manufacturers
and the commercial service industry alike.

In future works, the system will be improved and extended upon as follows:

1. The classification will be extended to include all 12 of the on-campus places.

2. The system will be further tested using a mobile robot, gathering both camera and laser
scanner data.

3. Using the data from the laser scanner, and the place categorization from the machine
learning models, a semantic map can be created.

4. Path-planning decisions can then be made using this semantic map.
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A — Probabilistic Robotics

A.1 Probability Theory

To express the uncertainty of a robot in a meaningful way and incorporate it into the decision-
making process, the mathematical concept of probability theory is proposed by (Thrun et al.,
2005). In their own words they say that ”... instead of relying on a single ”best guess" as to what
might be the case, probabilistic algorithms represent information by probability distributions over
a whole space of guesses. By doing so, they can represent ambiguity and degree of belief in a
mathematically sound way" (Thrun et al., 2005).

All quantities in probabilistic robotics such as sensor measurements, controls and odometry
data are modeled as random variables. Probabilistic laws are infered from this data to help
model the behavior of the system and make qualified guesses about the state of the robot. The
first key concept of probability theory is that of a joint distribution and it is given by

p(x, y) = p(X = x ∧ Y = y). (45)

This describes the probability of the event, that the random variable X takes on the value x

and that Y takes on y. If the random variables X and Y are independent from one another,
equation 45 takes on the form (Thrun et al., 2005)

p(x, y) = p(x)p(y) (46)

meaning the product of the individual probability densities gives the joint distribution. If the value
of one of the variables is known and the probability of the other variable is to be conditioned
on that fact then the conditional probability distribution can express this in the form of (Thrun
et al., 2005)

p(x | y) = p(x, y)

p(y)
(47)

or simply

p(x | y) = p(x)p(y)

p(y)
= p(x) (48)

for the independent case showing that knowledge of Y is irrelevant if X is to be calculated. In
probabilistic robotics (and probability theory in general) Bayes rule plays a very important role.
It was first formulated by Thomas Bayes in (Bayes & Price, 1763) and then further developed
and published in (Laplace, 1820) by Pierre-Simon Laplace which relates the conditional p(x | y)
to its ”inverse" p(y | x):

p(x | y) = p(y | x)p(x)
p(y)

. (49)

42



A.2 Markov Chains

Another important concept is that of state completeness or Markov chains named after and
outlined by Andrey Markov in (Markov, 1954). The state describes the characteristics of the en-
vironment and the robot itself and contains things such as the pose of the robot, joint velocities,
location and features of surrounding static or moving objects such as landmarks or humans
(Thrun et al., 2005). A state is called complete if it entails all necessary information to predict
the future state and no further knowledge of past states, measurements or controls carry any
additional information required. This is called the Markov property. In other words, all past
states (x0:t−1) and future states (xt+1:∞) are conditionally independent given the present state
xt.

p(xt+1:∞ | ���x0:t−1 , xt)⇒ p(xt+1:∞ | xt) (50)

This does not rule out the stochastic evolution of states but instead requires the state xt to
contain all this information about the stochastic variables. The Markov assumption is then used
to describe a model where the Markov property is assumed to hold. A temporal, discrete-time
series of states under this assumption is thus called a Markov chain.
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B — Deep Reinforcement Learning

B.1 Value-based Methods

These methods are based on estimating the values of being in a given state and then formu-
lating the control policies given the estimated values (Tai & Liu, 2016a) and are based on the
recursive Bellman equations (Bellman, 2013) with the Bellman Expectation Equation given by

Qπ(x, u) = Eπ
[
Rt+1 + γQπ(xt+1, ut+1 | xt = x, ut = u)

]
(51)

and the Bellman Optimality Equation given by

Qπ(x, u) = Eπ
[
Rt+1 + γmax

a′
Qπ(xt+1, u

′ | xt = x, ut = u)

]
(52)

The two most popular value-based RL methods (SARSA and Q-learning) then follow the
same recursive backup procedure that starts at the target value yt and updates the Q-values
by a step size α towards it and is given as follows:

Qπ(xt, ut)← Qπ(xt, ut) + αδt, (53)

δt = yt −Qπ(xt, ut). (54)

δt is termed the td-error (temporal difference error) and yt the td-target. The difference between
SARSA and Q-learning lies then in their td-targets:

ySARSA
t = Rt+1 + γQπ(xt+1, ut+1), (55)

y
Q-learning
t = Rt+1 + γmax

u′
Qπ(xt+1, u

′). (56)

SARSA is therefore an on-policy method since it updates its Q-value estimates by taking the
transitions generated by following the stochastic behavioural policy π into account. Q-learning
on the other hand is off-policy, since it updates its estimations towards a target optimal policy
(Tai & Liu, 2016a).

A deep Q-Network was proposed and successfully used by (Mnih et al., 2015) to control
Atari games using the raw pixel images from the emulator as inputs. The DQN approxi-
mates the optimal Q-value function with a deep CNN, whose weights shall be denoted as
θQ : Q(x, u; θQ) ≈ Q∗(x, u) which modulates the td-error and td-target into:

δDQNt = yDQNt −Q(xt, ut; θ
Q
t ), (57)
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yDQNt = Rt+1 + γmax
u′

Q(xt+1, u
′; θ−t ). (58)

Then an update step is performed using the gradient calculation following the partial deriva-
tive with a learning rate of α:

θt+1 ← θt − α ·

(
∂(δDQNt (θQt ))

2

∂θQt

)
. (59)

The two main techniques proposed in the DQN to stabilize learning are target-network, with
td-target being computed using outputs from a target-network θ− which shares the same archi-
tecture but only periodically updates the weights by copying θQ, and experience replay meaning
inputs are first stored into a replay memory and then random consecutive samples are drawn
from it. A Q-learning network was also used by (Lei & Ming, 2016) to the task of robot ex-
ploration, teaching a mobile robot to avoid obstacles in an unknown environment. They used
a supervised learning model implemented as a CNN to obtain a feature map via depth data.
The Q-network takes this feature-map and then follows a value-based approach. They later
proposed an alternative approach in (Tai & Liu, 2016b) with no preprocessing of the images. A
very similar approach was used by (Zhang et al., 2015) for vision-based end-to-end learning for
the manipulation of a robotic arm.

B.2 Policy-based Methods

Policy-based methods operate directly on the policies without maintaining value estimations
and search for parameters to maximize the policy objective function via either gradient-free (Fu
et al., 2005; Szita & Lörincz, 2006) or gradient-based paradigms, with gradient descent methods
remaining the most popular choice (Tai & Liu, 2016a). Given a policy πθ(·), policy optimization
searches for the best parameters θ that maximizes an objective function J(πθ)

J(πθ) = Eπθ
[
fπθ(·)

]
(60)

with fπθ(·) being a score function to judge the goodness of a policy with multiple valid choices
for the score function outlined in (Schulman et al., 2015). The policy gradient is then defined as

∇θJ(πθ) = Eπθ
[
∇θ log πθ · fπθ(·)

]
(61)

where ∇θ log πθ points out the direction in the parameters space to follow that leads to an
increase of the probability of good actions being sampled following the policy πθ. As pointed
out by (Deisenroth et al., 2013) directly following the policy gradient might conflict with hard
constraints or safety requirements in robotics settings; the search in undesired state space
regions should therefore be explicitly discouraged. The stochastic policy gradient (SPG)

∇θJ(πθ) = Ex,u
[
∇θ log πθ(u | x) ·Qπ(x, u)

]
(62)
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is further sample-inefficient in high-dimensional action spaces whereas the deterministic policy
gradient (DPG)

∇θJ(µθ) = Ex
[
∇θµθ(x) ·Qµ(x, µθ(x))

]
(63)

only needs to integrate over the state space.
A fairly sample efficient model-based policy-search algorithm was proposed in (Levine &

Koltun, 2013) employing techniques of Differential Dynamic Programming (DDP) to relax the
constraints regarding the new-sample availability along each individual gradient step. A vari-
ant of DDP called linear-quadratic regulation (LQR) was used to approximate the Gaussian
I-projection over the guiding distribution of the possible action-state pairs following the stochas-
tic policy

πG(ut | xt) = G(ut; g(xt),−Q−1uut). (64)

Approximations of the linear dynamics and quadratic rewards under the assumption that the
Jacobian and Hessian - matrices exist lead to the optimal policy being a linear Gaussian with
the mean function and covariance given by the Q-function. For the case of nonlinear dynamics,
πG(ut | xt) approximates a Gaussian around the nominal trajectory with the feedback usually
keeping the samples close to this trajectory (Levine & Koltun, 2013).

While model-free approaches need well parameterized policies, model-based approaches
are generally more accurate but require complex non-linear dynamic models that are difficult to
design and aren’t always computationally tractable. They therefore proposed a hybrid in (Levine
& Abbeel, 2014) by using a Gaussian mixture model (GMM) that fits a Gaussian on the taken
sample to restrict the trajectory distribution to obtain a piece-wise linear-Gaussian dynamics
model. They then combined this with the guided policy search (GPS) from their previous work
and transformed it into a GPS Lagrangian with a dual variable to enforce constraint satisfaction
and optimize regarding the weights and probability distributions:

Ltraj(p(τ), η) =

[∑
t

Ep(xt,ut)

[
l(xt,ut)− η log p̂(xt,ut)

]]
− ηH(p(τ))− ηε (65)

where E is the expected cost of l and H gives the differential entropy. Since this alternating
optimization leads to high entropy they penalized the entropy directly.

Finally, they applied this work for the task of visual-servoing with End-to-End learning in
(Levine et al., 2016) where the trajectory-centric RL algorithm generates guiding distributions
to supervise the policy-learning algorithm that builds on CNN to train the policy.

B.3 Actor-critic Methods

These algorithms maintain an explicit representation of both the policy (the actor ) and the value
estimates (the critic) by replacing the return Gt and the baseline b(x), that helps reducing the
variance of the estimation, of the standard score function (Williams, 1992)

fπθ(·) = Gt − bt(xt) (66)
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with the unbiased estimate Qπθ(xt, ut) and the baseline function V πθ(xt) respectively to form
the following score function:

fπθ(·) = Qπθ(xt, ut)− V πθ(xt) (67)

which is also called advantage function to estimate the advantage of taking a particular action
u in state x (Tai & Liu, 2016a):

A(x, u) = Q(x, u)− V (x). (68)

Other variants of DQN that use actor-critic methods or other augmentations of standard Q-
learning to enable learning in continuous action spaces include the deep deterministic policy
gradient (DDPG) proposed in (Lillicrap et al., 2015) or the normalized advantage function (NAF)
from (Guo et al., 2016).
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C — Detailed Classification Results

C.1 Visualization of the predictions

This chapter includes six images created by the MATLAB function plot visualizing the results
from table 1 for every trained model, as well as previously achieved results

Figure 11 shows the multinomial logistic regression accuracy results. For every environment,
roughly 75 samples made up the test set. MLR in particular struggled with the similarities
between the office and the door.

The results from the SVM-classification can be observed in figure 12. The number of support
vectors trained for the classes are 36 − 27 − 13 − 19 − 15 − 43 following the alphabetical order
of the classes with the inclusion of door; with the classes assembly-line and office requiring 36

and 43 support vectors respectively. This means that the generalization was difficult for those
classes, requiring a higher number of support vectors, to construct the margin.

Figure 13 lastly shows the predictions made by the NBF. While it struggled a bit with both
the office and auditorium environments, optimizing the hyperparameters helped boost its per-
formance by quite a bit.

It should also be noted, that the classification was originally done on only three classes: the
lecture theater as auditorium, a corridor and a kitchen. With out the strong cross-correlation
between the office and door recordings, and their similarity to the closet class, the ML-models
gave excellent results, of classifying around 98 to 99% correctly. The predictions for that data
set are visualized in figure 14, 15 and 16.
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Figure 11: Multinomial logistic regression results: Every prediction made by the MLR.

Figure 12: Support vector machine results: Predictions made by the support vector machine.
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Figure 13: Naive bayes filter results: Predictions made by the naive bayes filter.

Figure 14: Multinomial logistic regression results: Every prediction made by the MLR for the 3-class data
set.
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Figure 15: Support vector machine results: Predictions made by the support vector machine amongst
the limited set.

Figure 16: Naive bayes filter results: Visualization of the predictions made by the naive bayes lerner for
the 3-class set.
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C.2 Confusion Matrices

This section provides the two confusion matrices in figure 9 and 18 for the MLR- and the NBF-
model, respectively.

Figure 17: Logit confusion matrix : Normalized confusion matrix following the MLR-model
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Figure 18: Naive Bayes confusion matrix : Normalized confusion matrix following the NBF-model
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D — Source Code

D.1 MATLAB source code for the three ML-models

1 clc;

2 close all;

3 clear all;

4 training_set = (dlmread(’trainingset.csv’, ’,’, 0, 0)).’;

5 training_target_vector = (dlmread(’training_vector.csv’, ’,’, 0, 0)).’;

6 test_set = (dlmread(’testset.csv’, ’,’, 0, 0)).’;

7 test_target_vector = (dlmread(’test_vector.csv’, ’,’, 0, 0)).’;

8

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%

10 % MULTICLASS LOGIT-REG %

11 %%%%%%%%%%%%%%%%%%%%%%%%%%%

12

13 [model_logit, llh_logit] = logitMn(training_set, training_target_vector, 0.0001);

14 y_logit = logitMnPred(model_logit, test_set);

15 figure

16 plot( 1:75, y_logit(1:75), ’mo’,...

17 76:150, y_logit(76:150), ’ro’, ...

18 151:226, y_logit(151:226), ’bo’, ...

19 227:301, y_logit(227:301), ’ko’, ...

20 302:377, y_logit(302:377), ’go’, ...

21 378:452, y_logit(378:452), ’co’);

22 grid on

23 grid minor

24 accuracy_logit = 100 - (100*(length(nonzeros(abs(y_logit -

test_target_vector))))/length(test_set));

25 title([’Multiclass logistic Regression (\lambda = 0.0001)’, newline, ’Prediction

result: Accuracy = ’, num2str(accuracy_logit),’%’]);

26 xlabel(’Test samples’)

27 xlim([-10, 460])

28 ylabel([’Predicted class’])

29 ylim([0.8, 6.2])

30 legend(’assemblyline = 1’, ’auditorium = 2’, ’corridor = 3’, ’door = 4’,

’kitchen = 5’, ’office = 6’, ’Location’, ’Northwest’)

31

32 %%%%%%%%%%%%%%%%%%%%%%%%%%%

33 % MULTICLASS SVM %

34 %%%%%%%%%%%%%%%%%%%%%%%%%%%

35
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36 %mdl = fitcecoc(training_set.’, training_target_vector,

’OptimizeHyperparameters’, ’all’, ’HyperparameterOptimizationOptions’,

struct(’AcquisitionFunctionName’, ’expected-improvement-plus’));

37 svm_template = templateSVM(’Standardize’, 0, ’SaveSupportVectors’,true,

’BoxConstraint’, 75.786, ’KernelScale’, 0.7278, ’KernelFunction’, ’gaussian’);

38 training_target_vector = categorical(training_target_vector.’);

39 classOrder = unique(training_target_vector);

40 rng(1);

41 responseName = ’Detected Class’;

42 classNames = {num2str(1), num2str(2), num2str(3), num2str(4), num2str(5),

num2str(6)};

43 SVM_model = fitcecoc(training_set.’, training_target_vector, ’Learners’,

svm_template, ’ClassNames’, classOrder, ’Coding’, ’onevsall’);

44 y_svm = (predict(SVM_model, test_set.’).’);

45 isLoss_SVM = resubLoss(SVM_model);

46 figure

47 plot( 1:75, y_svm(1:75), ’mo’,...

48 76:150, y_svm(76:150), ’ro’, ...

49 151:226, y_svm(151:226), ’bo’, ...

50 227:301, y_svm(227:301), ’ko’, ...

51 302:377, y_svm(302:377), ’go’, ...

52 378:452, y_svm(378:452), ’co’);

53 grid on

54 grid minor

55 accuracy_svm = 100 - (100*(length(nonzeros(abs(double(y_svm) -

test_target_vector))))/length(test_set));

56 title([’Multiclass Support Vector Machine’, newline, ’(OvA, Hinge-Loss,

36-27-13-19-15-43 SVs)’, newline, ’Prediction result: Accuracy = ’,

num2str(accuracy_svm),’%’]);

57 xlabel(’Test samples’)

58 xlim([-10, 460])

59 ylabel([’Predicted class’])

60 legend(’assemblyline = 1’, ’auditorium = 2’, ’corridor = 3’, ’door = 4’,

’kitchen = 5’, ’office = 6’, ’Location’, ’Northwest’)

61

62

63 % %%%%%%%%%%%%%%%%%%%%%%%%%%%

64 % % NAIVE BAYESIAN FILTER %

65 % %%%%%%%%%%%%%%%%%%%%%%%%%%%

66

67 % Bayesian_model = fitcnb(training_set.’, training_target_vector,

’OptimizeHyperparameters’, ’all’, ’HyperparameterOptimizationOptions’,

struct(’AcquisitionFunctionName’, ’expected-improvement-plus’));

68 Bayesian_model = fitcnb(training_set.’, training_target_vector, ’ClassNames’,

classOrder, ’Distribution’, ’kernel’, ’Width’, 0.019527);

69 y_bayesian = (predict(Bayesian_model, test_set.’).’);

70 isLoss_Bayesian = resubLoss(Bayesian_model);

71 figure

72 plot( 1:75, y_bayesian(1:75), ’mo’,...

73 76:150, y_bayesian(76:150), ’ro’, ...

55



74 151:226, y_bayesian(151:226), ’bo’, ...

75 227:301, y_bayesian(227:301), ’ko’, ...

76 302:377, y_bayesian(302:377), ’go’, ...

77 378:452, y_bayesian(378:452), ’co’);

78 grid on

79 grid minor

80 accuracy_bayesian = 100 - (100*(length(nonzeros(abs(double(y_bayesian) -

test_target_vector))))/length(test_set));

81 title([’Naive Bayesian Filter’, newline, ’Prediction result: Accuracy = ’,

num2str(accuracy_bayesian),’%’]);

82 xlabel(’Test samples’)

83 xlim([-10, 460])

84 ylabel([’Predicted class’])

85 legend(’assemblyline = 1’, ’auditorium = 2’, ’corridor = 3’, ’door = 4’,

’kitchen = 5’, ’office = 6’, ’Location’, ’Northwest’)

Code 1: MATLAB code used for the development of the ML-models. Lines 36 and 67 are used for
optimizing the hyperparameters.
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D.2 ROS node used for interfacing with caffe

1 #!/usr/bin/env python

2 ’’’

3 Copyright (C) 2016, by

4 Feras Dayoub (feras.dayoub@gmail.com)

5

6 This is free software: you can redistribute it and/or modify

7 it under the terms of the GNU Lesser General Public License as published by

8 the Free Software Foundation, either version 3 of the License, or

9 (at your option) any later version.

10

11 This software package is distributed in the hope that it will be useful,

12 but WITHOUT ANY WARRANTY; without even the implied warranty of

13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

14 GNU Lesser General Public License for more details.

15

16 You should have received a copy of the GNU Leser General Public License.

17 If not, see <http://www.gnu.org/licenses/>.

18 ’’’

19 import roslib; roslib.load_manifest(’semantic_label_publisher’)

20 import numpy as np

21 import rospy

22 import csv

23 import sys

24 import cv2

25 import cPickle

26 import gzip

27 import caffe

28 from sklearn.externals import joblib

29 from sklearn import svm

30 import os.path

31 import time

32 from read_cat import cats

33 from sensor_msgs.msg import Image , LaserScan

34

35 from cv_bridge import CvBridge, CvBridgeError

36

37 from semantic_label_publisher.msg import SemLabel

38 class SemanticLabel(object):

39 def __init__(self,lname,lid,lcolor):

40 self.label_name = lname

41 self.label_id = int(lid)

42 self.label_color = [int(lcolor[0]),int(lcolor[1]),int(lcolor[2])]

43

44 class SemLabelPub():

45 def __init__(self,caffe_root,MODEL_FILE,PRETRAINED,MEAN_FILE,

46 SVM_PICKLE_FILE,SUB_CAT_FILE):

47 self.pub = rospy.Publisher(’semantic_label’,SemLabel)
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48 self.image_pub = rospy.Publisher("sem_label_image",Image)

49

50 self.image_sub = rospy.Subscriber(’/camera/color/image_raw’, Image,

self.image_callback)

51

52 self.bridge = CvBridge()

53

54 self.total_count = 0;

55 self.correct = 0;

56

57 self.net = caffe.Classifier(MODEL_FILE, PRETRAINED,caffe.TEST)

58 self.transformer = caffe.io.Transformer({’data’: (1,3,227,227)})

59

60 self.transformer.set_transpose(’data’, (2,0,1))

61 self.net.blobs[’data’].reshape(1,3,227,227)

62

63 db_mean = np.load(MEAN_FILE)

64 self.transformer.set_mean(’data’, db_mean.mean(1).mean(1))

65

66 caffe.set_mode_gpu()

67

68 self.msg = SemLabel()

69

70 with open(SUB_CAT_FILE, ’r’) as f:

71 txt_data = f.readlines()

72

73 with open(

74 ’/home/andreas/catkin_ws/src/ros-semantic-mapper

75 /setup/categoryIndex_places205.csv’, ’r’ ) as f2:

76 txt_data2 = f2.readlines( )

77

78 self.labels = list()

79 for l in txt_data:

80 if l[0] != ’#’:

81 label_name = l.split(" ")[0]

82 label_id = l.split(" ")[1]

83 label_color = l.split(" ")[2].split(",")

84 self.labels.append(SemanticLabel(label_name,label_id,label_color))

85

86 self.labels2 = list()

87 for l in txt_data2:

88 label_name_tmp = l.split( "/" )[2]

89 label_name = label_name_tmp.split( " " )[0]

90 label_id = l.split( " " )[1]

91 label_color = [0, 0, 0]

92 self.labels2.append(SemanticLabel(label_name,label_id,label_color))

93

94 open( ’/home/andreas/catkin_ws/src/ros-semantic-mapper/

95 results/distribution_205_office.csv’, ’ab’ ).writelines(

96 ’ ’.join(str(j.label_name)+’,’ for j in self.labels2) + ’\n’ )
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97

98 self.font_size = 3

99 self.font_thickness = 5

100

101 def image_callback(self,data):

102 print "new image received"

103 try:

104 cv_img = self.bridge.imgmsg_to_cv2(data, "bgr8")

105 cv_img = cv2.resize(cv_img,(227,227))

106 print ’image received’

107 except CvBridgeError, e:

108 print e

109

110 im_input = self.transformer.preprocess(’data’,cv_img)

111 im_input = im_input[np.newaxis]

112 self.net.blobs[’data’].reshape(*im_input.shape)

113 self.net.blobs[’data’].data[...] = im_input

114 self.net.forward()

115

116 if ’fc7’ in self.net.blobs.keys():

117 feature = self.net.blobs[’fc7’].data

118 prob = self.net.blobs[’prob’].data

119 result = list()

120 result2 = list()

121 self.all_lables = list()

122 self.all_lables2= list()

123 for l in self.labels:

124 idx = l.label_id

125 self.all_lables.append(l.label_name)

126 result.append(prob[0,idx])

127 for l in self.labels2:

128 idx = l.label_id

129 self.all_lables.append(l.label_name)

130 result2.append(prob[0,idx])

131 result = np.array(result,np.dtype(float))

132 result = result / np.sum(result)

133 result2 = np.array(result2, np.dtype( float ) )

134

135 outfile2 = open( ’/home/andreas/catkin_ws/src/ros-semantic-mapper/

136 results/distribution_205_office.csv’, ’ab’ )

137 writer2 = csv.writer( outfile2 )

138 writer2.writerow( result2 )

139 outfile2.close( )

140

141 self.msg.header.stamp = data.header.stamp

142 self.msg.header.frame_id = ’base_link’

143 class_idx = np.argmax(result)

144 print class_idx

145 if class_idx == 4:

146 self.correct += 1
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147 outfile = open( ’/home/andreas/catkin_ws/src/ros-semantic-mapper/

148 results/office_correctNN.txt’, ’ab’ )

149 outfile.write(’{}’.format(self.correct))

150 outfile.write(’\n’)

151 outfile.close()

152

153 class_name = self.all_lables[class_idx]

154 print class_name

155

156 self.msg.r = [k.label_color[0] for k in self.labels]

157 self.msg.g = [k.label_color[1] for k in self.labels]

158 self.msg.b = [k.label_color[2] for k in self.labels]

159 self.msg.prob = result

160 self.msg.lvl = class_idx

161

162 self.pub.publish(self.msg)

163 text_x = 10

164 text_y = 100

165 cv_img = cv2.resize(cv_img,(1280,960))

166 font = cv2.FONT_HERSHEY_PLAIN

167 for c in range(len(result)):

168 cv2.rectangle(cv_img,(text_x+0,text_y),(text_x+0+int(300*float(result[c])),

169 text_y - 20), (255,0,0),20)

170 if c == class_idx:

171 cv2.putText(cv_img,self.all_lables[c] + ’ ’ ,(text_x,text_y), font,

self.font_size,(0,255,0),self.font_thickness)

172 else:

173 cv2.putText(cv_img,self.all_lables[c] + ’ ’ ,(text_x,text_y), font,

self.font_size,(0,0,255),self.font_thickness)

174 text_y += 50

175

176 try:

177 self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_img, "bgr8"))

178 except CvBridgeError, e:

179 print e

180

181 def main(args):

182 rospy.init_node(’sem_label_pub’)

183 caffe_root = rospy.get_param(’~caffe_root’, ’~/caffe/’)

184 MODEL_FILE = rospy.get_param(’~MODEL_FILE_PATH’, ’~/deploy.prototxt’)

185 PRETRAINED = rospy.get_param(’~PRETRAINED_PATH’, ’~/model.caffemodel’)

186 MEAN_FILE = rospy.get_param(’~MEAN_FILE_PATH’, ’~/mean.npy’)

187 SVM_PICKLE_FILE = rospy.get_param(’~SVM_PICKLE_FILE_PATH’, ’~/clf.pkl’)

188 SUB_CAT_FILE = rospy.get_param(’~SUB_CAT_FILE’,’~/sub_cats.txt’)

189 try:

190 ne = SemLabelPub(caffe_root,MODEL_FILE,PRETRAINED,MEAN_FILE,

191 SVM_PICKLE_FILE,SUB_CAT_FILE)

192 except rospy.ROSInterruptException: pass

193 rospy.spin()

194
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195 if __name__ == ’__main__’:

196 main(sys.argv)

Code 2: ROS python node used to interface with caffe, store the anaylsis results in .csv-sheets and
publish the top-1 classification on a predefined topic. (Source code edited and taken from
(Sunderhauf et al., 2016))
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D.3 Python code for data set visualization

1 import csv

2 import matplotlib.pyplot as plt

3 import numpy as np

4 import matplotlib.patches as mpatches

5 num_classes = 205

6 labels = [j for j in range(num_classes)]

7 labels = [’’]*len(labels)

8 labels[9] = ’1’

9 labels[13] = ’2’

10 labels[45] = ’3’

11 labels[54] = ’4’

12 labels[107] = ’5’

13 labels[111] = ’6’

14 labels[129] = ’7’

15 labels[174] = ’8’

16 row_number=0

17 with open(’trainingset.csv’,’r’) as csvfile:

18 plots=csv.reader(csvfile, delimiter=’,’)

19 for row in plots:

20 row_number+=1

21 for i in range(num_classes):

22 if row_number <= 227:

23 plt.scatter(i,row[i], color=’lightgray’)

24 elif row_number <= 454:

25 plt.scatter(i,row[i], color=’red’)

26 elif row_number <= 682:

27 plt.scatter(i,row[i], color=’blue’)

28 elif row_number <= 909:

29 plt.scatter(i,row[i], color=’black’)

30 elif row_number <= 1137:

31 plt.scatter(i,row[i], color=’green’)

32 else:

33 plt.scatter(i,row[i], color=’cyan’)

34 plt.xlim(0, num_classes-1)

35 plt.ylim(0, 1)

36 plt.xticks(np.arange(num_classes), labels)

37 assembly_patch = mpatches.Patch(color=’lightgray’, label = ’1: assembly_line’)

38 auditorium_patch = mpatches.Patch(color=’red’, label = ’2: auditorium’)

39 closet_patch = mpatches.Patch(color=’white’, label = ’3: closet’)

40 corridor_patch = mpatches.Patch(color=’blue’, label = ’4: corridor’)

41 kitchen_patch = mpatches.Patch(color=’green’, label = ’5: kitchen’)

42 kitchenette_patch = mpatches.Patch(color=’white’, label = ’6: kitchenette’)

43 office_patch = mpatches.Patch(color=’cyan’, label =’7: office’)

44 staircase_patch = mpatches.Patch(color = ’white’, label = ’8: staircase’)

45 door_patch = mpatches.Patch(color = ’black’, label =’door’)

46
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47 plt.legend(handles=[assembly_patch, auditorium_patch, closet_patch,

corridor_patch, kitchen_patch, kitchenette_patch, office_patch,

staircase_patch, door_patch])

48 plt.show()

Code 3: Python code used to generate the visualizations of the data set distributions.
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