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Abstract—Mobile robot operations are becoming increasingly
sophisticated in terms of robust environment perception and
levels of automation. However, exploiting the great represen-
tational power of data-hungry learned representations is not
straightforward, as robotic tasks typically target diverse scenarios
with different sets of objects. Learning specific attributes of
frequently occurring object categories such as pedestrians and
vehicles, is feasible since labeled data-sets are plenty. On the
other hand, less common object categories call for the need
of use-case-specific data acquisition and labelling campaigns,
resulting in efforts which are not sustainable with a growing
number of scenarios. In this paper we propose a structure-aware
learning scheme, which represents geometric cues of specific
functional objects (airport loading ramp) in a highly invariant
manner, permitting learning solely from synthetic data, and also
leading to a great degree of generalization in real scenarios.
In our experiments we employ monocular depth estimation
for generating depth and surface normal data and in order
to express geometric traits instead of appearance. Using the
surface normals, we explore two different representations to learn
structural elements of the ramp object and decode its 3D pose: as
a set of key-points and as a set of 3D bounding boxes. Results are
demonstrated and validated in a series of robotic transportation
tasks, where the different representations are compared in terms
of recognition and metric space accuracy. Te proposed learning
scheme can be also easily applied to recognize arbitrary man-
made functional objects (e.g. containers, tools) with and without
known dimensions.

Index Terms—robot vision, environment perception, geometric
cue learning, monocular depth

I. INTRODUCTION

Autonomous robot operations are emerging in various un-
constrained environments such as in logistics, construction and
agriculture. Environment perception and spatial reasoning are
important technology components enabling these applications.
In recent years Deep Learning has substantially advanced the
state of several core technologies, where the object detection
and pose estimation tasks reach a high accuracy in diverse
settings. In these tasks learned representations are used to
establish a perceived environment model in terms of a set of
pre-defined entities and their spatial relations.

Despite the significant progress, learning robust represen-
tations is often hindered by the need of exhaustive learning
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Fig. 1. Illustration depicting the employed input image representation and the
two distinct inference tasks for the use-case of approaching a loading ramp.

of vast set of object appearances under different photometric
conditions and varying view geometries. This requirement
implies the availability of large and diverse annotated data-
sets. For less common object categories, however, learning
schemes often must rely on curated data collection or syn-
thetic data simulation. Certain input representations, such as
geometric cues, also offer ways to accomplish more data-
efficient learning. Most importantly, instead of learning all pos-
sible object appearances, learning geometric representations
discards photometric and appearance variations and it captures
a simpler innate object property. This reduced representational
space implies less data needed for learning. The emergence
of enhanced depth sensing modalities such as high-quality
stereo vision, monocular depth estimation, LiDAR, Radar also
supports this research direction and can lead to data represen-
tations highly invariant with respect to view, appearance and
photometric variations.

In this paper we aim at an environment perception func-
tionality for a mobile robot, enabling it to approach and
align itself to a pre-defined elongated structure (loading ramp)
for assisting ground cargo handling. To this end, we present
a generic structure-aware learning scheme to estimate the
3D pose of man-made functional objects (via the example
of the airport loading ramp) from a monocular view, by
exploiting recent advances of monocular depth estimation [1]
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Fig. 2. Overview of the two representational (key-point and 3D-BB) and pose estimation pipelines. The neural network input in both cases is an image of
the surface normals, computed from a monocular depth estimate.

and learning. We employ the computed surface normals of the
depth image (see Fig. 1), which introduces two advantages:
First, the surface normal image encodes scale-invariant local
geometric cues, which allows representing local structural
elements, such as 3D edges, corners, local structural patterns.
Furthermore, when generating synthetic data of man-made
structures, monocular depth and surface normal estimation
yields results where the data quality gap between synthetic
and real is small. These two representational traits allow us
to formulate a pose estimation learning task purely learned
from synthetic data and well generalizing in real scenarios.
We explore two independent learning pipelines, key-point- and
3D-bounding-box-based object representations to derive object
detection hypotheses in a metric birds-eye-view (BEV) space
(see fig. 2). The motivation behind exploring and comparing
these two representations is given by their different ways to
represent spatial relations and correlations. Key-points are of
more localized spatial extent, therefore a robustness in case
of partial object visibility is expected. On the other hand,
3D bounding box (3D-BB) regression learns an object-holistic
representation, presumably contributing to a more accurate
spatial localization. The proposed scheme is simple, and it
can be applied to recognize arbitrary man-made objects with
distinct local structural elements. Monocular depth estimation
can also be replaced by stereo depth computation.

The remainder of the paper is structured as follows: section
II gives an overview on related work. Section III describes
the data generation and pose estimation methodology for both
key-point- and 3D-bounding-box-based schemes. Section IV
presents experimental results and a discussion in light of a
real robotic setup. Finally, Section V concludes the paper.

II. RELATED WORK

3D object pose denotes the spatial transform needed to align
the coordinate reference of an observed object with that of the
observer. Therefore, accurate object detection and pose esti-
mation are key vision tasks enabling robotic spatial reasoning
and manipulation. The Amazon Picking Challenge [2] is a
relevant example where recovering object pose from a close
object set allows for automated part manipulation. Industrial
part recognition [3] and household robotic manipulation [4]
are also relevant applied examples. Recent reviews on 3D pose
estimation [5], [6] provide a comprehensive overview both on
the representational and applied aspects.

Recent research activities focus on learned representations
of geometric nature. This emerging field of geometric deep
learning is well summarized in [7], [8], where geometric
principles are highlighted to explain regularities often observed
in the physical world. Depth data naturally conveys geometric
information, therefore understanding depth computation, its
data characteristics and its failure modes are highly pertinent.
[9] outlined four steps commonly encountered in classical
stereo image pipelines. Despite representational advances via
Deep Learning, these steps continue to play a key role [10].
Depth estimation from a single image, also denoted as monoc-
ular depth estimation, has recently emerged as an appealing
alternative to depth estimation from stereo image pairs [11].
An enhanced generalization of monocular depth models is at-
tained via a mixture of datasets in [12]. Recent representational
advances based on Vision Transformers [13], exploiting the
attention-mechanism [14] are capable to accurately capture
long-range semantic relations [15], see also [16] for a survey.

The 3D pose estimation task spans a 6D search space of
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Fig. 3. The proposed training data generation pipeline: first, a simple initial
view and scene geometry is created in Blender (top). Random view and
structural variations are used to generate synthetic color data with two different
annotations (key-points, 3D-BB). The rendered color images are used for
monocular depth estimation and surface normal computation (bottom).

object location x = (x, y, z) and orientation θ = (θr, θp, θy).
Many methods rely on RGB-D images to recover these pa-
rameters. Representations have progressed from handcrafted
schemes, e.g. Linemod [17], to end-to-end learned pose es-
timation schemes [18], [19], [20]. Most common approaches
formulate the learning task [18], [21], [19] as corner point
regression, followed by a PnP step [22]. The proposed direct
regression scheme of 3D bounding box (3D-BB) pose param-
eters in [23] has triggered a large body of works [24], [25]
focusing on 3D-BB pose regression from a monocular image
or from depth data.

Our proposed methodology shares many representational
aspects (pose parametrization, pose computation via point
regression) with existing works, however, it exploits the in-
termediary monocular depth estimation step in a novel way to
derive a geometry-aware learning scheme generalizing from
synthetic training data.

III. METHODOLOGY

In our proposed learning scheme, as shown in fig. 2, we
explore two independent object representations both yielding
a 3D pose estimate. Both representational pipelines rely on
an input map of surface normals, computed from a monocular
depth estimate. In the followings we describe the synthetic
data generation and learning steps in detail.

A. Data generation

Synthetic data generation allows for creating vast quantities
of geometric structural variations which, when rendered, re-
sult in images depicting structures from diverse view-points.
Using the object appearance directly from the color images
for learning is hindered by the fact that models trained on
synthetic data often exhibit a severe accuracy degradation
when facing the real data domain. Generating photo-realistic
models is a remedy, but it requires much effort as appearance
often exhibits a great diversity. Depth data, on the other hand,

Fig. 4. The employed mobile platform (Reform-Werke Metron P48 RC)
equipped with multi-sensor and control hardware.

significantly reduces variations and geometric cues become
the prevailing information. Monocular depth estimation [15]
correctly infers local geometric structures (e.g. 3D edges and
corners), which nevertheless become less and less accurate at
a larger spatial scale (e.g. warped ground plane). Monocular
depth estimation also introduces smoothing and noise artifacts,
which prove to be beneficial, as depth estimates from real
images exhibit the same discrepancies, thus lowering the gap
between simulated and real data.

As shown in fig. 3 we first re-create the vehicle on-board
camera’s view geometry. To this end, we use a single on-
board image of the scene, Blender [26] and the publicly avail-
able fSpy toolkit [27]. This tool employs a photogrammetric
scheme [28] to estimate the camera view geometry and its
focal length from a single photo depicting our ramp structure
with known dimensions. After establishing a view geometry,
we manually create an initial simple scene with an arbitrary
number of ramp structural elements and also distracting ramp-
like objects (3D blocks) to force representation learning to
focus on ramp-specific structural elements (e.g. T-junctions).
Programmatically, using Blender’s python API, we randomize
the camera viewpoint within a range typical for our use-
case. Furthermore, we compute for each ramp structural unit
annotations which unambiguously describe their structure via
a set of key-points and 3D bounding box pose parameters. The
rendered color images contain sufficient texture and shading
information encoding the perspective such that a subsequent
monocular depth estimation step [15] can estimate a consistent
depth representation (not shown). Next, we use a simple
procedure to transform depth images to surface normals. We
calculate depth derivatives along x and y using the Sobel
kernel. Using the computed gradients we build local support
planes, whose normal vectors can be seen as the normal vec-
tors of the object surface at those pixels. The directional vector
components of the computed surface normals are mapped to
respective 8-bit RGB channels (see fig 3). In this way we
generate 100K images with a resolution of 768×512 px and
corresponding annotations for training.
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Fig. 5. Example results for detecting ramp structural elements (as defined
in Fig. 3) via a set of key-points. Note the varying illumination and viewing
conditions.

B. Pose-aware detection via key-points

The computed surface normals and corresponding annota-
tions represent the input of our learning scheme. Both key-
point and 3D-BB representation learning methods employ the
CenterNet [25] architecture as the basis. We use the DLA-
34 hierarchical layer fusion network scheme to enlarge the
spatial scope considered during learning. We consider each
ramp structural element (see fig. 3) as an object. In an image
containing n object instances, we seek to estimate following
two-dimensional attributes: {(x̂i, ŷi), (δx̂i, δŷi), (ŵi, ĥi)}ni=1,
corresponding to the integer-valued object center, float-valued
2D offsets and 2D bounding box dimensions, respectively. We
define 4 key-points representing an object and similarly to
human key-point estimation in [25] we estimate 4n key-point
locations and key-point-to-center offsets. Given the known
dimensions of sought structure 3 and the 4 estimated key-
points defining a 3D planar structure, a PnP scheme can be
applied to lift the 2D estimates into 3D.

C. Pose-aware detection via 3D-BB regression

3D pose estimation requires the estimation of 3D trans-
lational and rotational parameters. We formulate the set of
sought parameters as a hybrid, 2D and 3D regression task,
while employing the same representational backbone as in the
previous case. Each ramp structure unit (denoted as object) has
a 3D center estimate:

[
X̂ Ŷ Ẑ

]⊺
. The regression task of this

variable becomes substantially easier, if the directly observable
2D center position (x̂, ŷ) and the object distance (depth) Ẑ
are formulated as estimation tasks. Upon an estimated 2D
center position and corresponding depth, the 3D translational
parameters can be obtained by:

X̂ = (x̂− px) ∗ Ẑ/fx , Ŷ = (ŷ − py) ∗ Ẑ/fy (1)

where fx, fy , px, py are the focal lengths and principal points
along the x and y image plane axes, respectively. We consider
two rotational roll and yaw angles (α, β) for each structural
unit. During data generation the observed angles (αv , βv) with
respect to the camera are computed via:

αv = α+ arctan(X/Z) , βv = β + arctan(Y/Z) (2)

in order to establish a consistent correlation between the
observable orientations with the data patterns in the normal im-
ages. The two orientation are encoded as [sin(αv), cos(αv)]

⊺

and [sin(βv), cos(βv)]
⊺ for learning. As the ramp structural

units exhibit mirror symmetry, we only consider rotations
within the [0, π] range.

For both representational cases, we formulate a composite
loss function where key-point classification employs a focal
loss term [25], while the other parameters are penalized via
an L1 loss function. In all cases we consider a single object
class.

D. Post-processing: 3D structure fitting

For key-point-based object proposals, the proposals must
be lifted into the 3D space. As the 4 key-points define a
planar structure of known dimensions, we employ the ePnP
[29] scheme to compute corresponding 3D coordinates of a 3D
plane, thus placing the structure into a birds-eye-view (BEV)
space.

In order to enforce the structural constraint of a linear
structure, we employ a RANSAC-based line-fitting scheme
operating on the set of proposed structure elements in the BEV
space. We treat the individual proposed elements as oriented
line segments and we compute a fitness score of tentative
matches based as 3D spatial proximity and angular alignment.
Since the inlier-vs-outlier ratio in all 25 approach maneuvers
was very high, therefore the best matching ramp fit could
be found in an unambiguous and temporally stable manner.
No structure tracking was applied, but it would represent a
straightforward extension.

IV. RESULTS AND DISCUSSION

The mobile robotic setup consisted of a Metron P48RC
[30] vehicle equipped with an RTK GPS, a LeiShen surround
LiDAR and a stereo camera of 3.2 Mpixel resolution. The
proposed methodology used only one view of the stereo setup,
after resizing the image to 768×512 pixels. The on-board
unit was an NVidia Xavier AGX platform running directly
the ramp pose detection code in PyTorch. Both detection
and pose estimation pipelines run at about 7 fps without
any run-time optimization. The vehicle was used in 3 dataset
recording campaigns under different seasonal and time-of-the-
day conditions. 25 test datasets (consisting of more than 75000
frames) have been selected for evaluation, where ramp drive-
by’s and approaches along different paths of travel have been
carried out.

Results for key-point-based detection are shown in fig. 5.
The true ramp structural elements have been detected with a
high recall under varying viewing conditions, even at rather
small scales (down to 16 px). However, certain step-like
structures (fence, barrier) have occasionally caused isolated
false detection responses, despite representing such clutter
objects during data generation.

Results for 3D-BB-based detection are shown in fig. 6.
The top row of the figure also shows the computed surface
normals for two different illumination conditions. As it can
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Fig. 6. Overview on the employed input data and accomplished results for ramp detection via 3D-BB regression. Top row: Monocular depth image, its
computed normals and detection results for two different illumination conditions. Center and bottom rows: detection results for four different scenarios
displayed in the image and birds-eye-view space. The red line implies the detected ramp structure. The last image shows the achieved generalization towards
generic ramp-like objects.

be seen, the structure of surface normals accurately reflects
the local ramp geometry, well outlining edges and junctions
despite low-contrast or different illumination conditions. 3D-
BB results indicate that the pose of the ramp structural units
can be more accurately recovered than via key-points. 3D
bounding boxes enforce more object-like representation, as
the learning task targets an oriented bounding box estimate
best matching the data. Key-point-based representation is
more local in its nature, as its structure is defined by edges
connecting local point estimates. This characteristics results
in more structural flexibility and also inaccuracy. The higher
spatial accuracy of the 3D-BB representation can be observed
in all results showing back-projected structures. Furthermore,
the last image depicts the high generalization ability of the
proposed representation towards similar ramp structures, as the
ramp structure units of a carrier vehicle (same height, similar
steel frame) also accurately detected.

TABLE I
EVALUATION OF DETECTION AND POSE ESTIMATION ACCURACY

REPRESENTATION
Measure key-point 3D bounding box
RMSE 0.97 0.73

Precision 0.51 0.64
Recall 0.48 0.52

We perform a simple quantitative evaluation to examine the
spatial accuracy of the pose estimates, and the recognition
accuracy. To generate metric ground truth, we select 25 image
frames (one representative frame of each test run) with a
ramp structure. Using the same photogrammetry pipeline via
fSpy, as used for the data generation step of section III-A,
we manually place a set of structural elements in the 3D
space (aligned to the image structures) to create metric ground
truth in the camera space. Using the root-mean-square-error
(RMSE) (eq. 3) between N ground truth (Xi) and estimated
(X̂i) ramp unit 3D centers, we compute a measure for the
spatial accuracy of estimates. The accuracy values for both
key-point and 3D-BB representations are shown in table I.

RMSE =

√√√√ 1

N

N∑
i=1

(Xi − X̂i)2 (3)

To quantify the recognition accuracy of our 1-class problem
(ramp structural unit vs. background), we employ a common
evaluation procedure used in works targeting 3D detection and
localization [24]. Using the manually created 3D bounding
box ground truth for each structural element, we compute the
3D IoU with a threshold of 0.7. Based on this overlap-based
association measure, we compute precision and recall values
for both representations, as shown in table I. As it can be seen
from the table, 3D-BB-representation yields a higher spatial
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accuracy in terms of 3D RMSE error. In terms of recognition
accuracy, this representation also seems to be advantageous, as
it exhibits (upon a detected structural element) a higher spatial
accuracy, although suffers from a sensitivity to occlusion and
failure for small-sized objects. From an applied point-of-view,
both representations meet the task requirement, as the ramp
structure is detected in all 25 test sequences, allowing for
subsequent spatial reasoning.

V. CONCLUSIONS

In this paper we present a simple learning scheme applicable
to robotic scenarios where object recognition of less common
objects without the need of manual annotations is needed.
The proposed scheme demonstrates that learned geometric
representations can unambiguously localize and recover the
3D pose of these objects, and despite the training from the
purely synthetic domain, the model generalizes extremely well
in the real domain. The paper also presents experimental evi-
dence that depth data from monocular (and also stereo) depth
estimation conveys sufficiently accurate spatial information to
perform occlusion- and illumination-robust pose estimation.
Future work will investigate the use and advantages of stereo
depth over monocular depth estimates.
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